本文整理汇总了Python中cv2.transform方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.transform方法的具体用法?Python cv2.transform怎么用?Python cv2.transform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.transform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _adjust_affine_matrix
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def _adjust_affine_matrix(self, mask_size, affine_matrix):
""" Adjust the affine matrix for the mask's storage size
Parameters
----------
mask_size: int
The original size of the mask.
affine_matrix: numpy.ndarray
The affine matrix to transform the mask at original size to the parent frame.
Returns
-------
affine_matrix: numpy,ndarray
The affine matrix adjusted for the mask at its stored dimensions.
"""
zoom = self.stored_size / mask_size
zoom_mat = np.array([[zoom, 0, 0.], [0, zoom, 0.]])
adjust_mat = np.dot(zoom_mat, np.concatenate((affine_matrix, np.array([[0., 0., 1.]]))))
logger.trace("storage_size: %s, mask_size: %s, zoom: %s, original matrix: %s, "
"adjusted_matrix: %s", self.stored_size, mask_size, zoom, affine_matrix.shape,
adjust_mat.shape)
return adjust_mat
示例2: keypoint_rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def keypoint_rotate(keypoint, angle, rows, cols, **params):
"""Rotate a keypoint by angle.
Args:
keypoint (tuple): A keypoint `(x, y, angle, scale)`.
angle (float): Rotation angle.
rows (int): Image height.
cols (int): Image width.
Returns:
tuple: A keypoint `(x, y, angle, scale)`.
"""
matrix = cv2.getRotationMatrix2D(((cols - 1) * 0.5, (rows - 1) * 0.5), angle, 1.0)
x, y, a, s = keypoint[:4]
x, y = cv2.transform(np.array([[[x, y]]]), matrix).squeeze()
return x, y, a + math.radians(angle), s
示例3: persTransform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def persTransform(pts, H):
"""Transforms a list of points, `pts`,
using the perspective transform `H`."""
src = np.zeros((len(pts), 1, 2))
src[:, 0] = pts
dst = cv2.perspectiveTransform(src, H)
return np.array(dst[:, 0, :], dtype='float32')
示例4: affTransform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def affTransform(pts, A):
"""Transforms a list of points, `pts`,
using the affine transform `A`."""
src = np.zeros((len(pts), 1, 2))
src[:, 0] = pts
dst = cv2.transform(src, A)
return np.array(dst[:, 0, :], dtype='float32')
示例5: sepia
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def sepia(img):
kernel = np.float32([
[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(img, kernel)
示例6: extreme_corners
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def extreme_corners(frame, transforms):
"""Calculate max drift of each frame corner caused by stabilizing transforms
:param frame: frame from video being stabilized
:param transforms: VidStab transforms attribute
:return: dictionary of most extreme x and y values caused by transformations
"""
h, w = frame.shape[:2]
frame_corners = np.array([[0, 0], # top left
[0, h - 1], # bottom left
[w - 1, 0], # top right
[w - 1, h - 1]], # bottom right
dtype='float32')
frame_corners = np.array([frame_corners])
min_x = min_y = max_x = max_y = 0
for i in range(transforms.shape[0]):
transform = transforms[i, :]
transform_mat = vidstab_utils.build_transformation_matrix(transform)
transformed_frame_corners = cv2.transform(frame_corners, transform_mat)
delta_corners = transformed_frame_corners - frame_corners
delta_y_corners = delta_corners[0][:, 1].tolist()
delta_x_corners = delta_corners[0][:, 0].tolist()
min_x = min([min_x] + delta_x_corners)
min_y = min([min_y] + delta_y_corners)
max_x = max([max_x] + delta_x_corners)
max_y = max([max_y] + delta_y_corners)
return {'min_x': min_x, 'min_y': min_y, 'max_x': max_x, 'max_y': max_y}
示例7: generateImage
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def generateImage(self):
width = self._shape[0]
height = self._shape[1]
eyePoint = [(0.34 * width, height / 2.2), (0.66 * width, height / 2.2)]
boundPoint = [(0, 0), (width / 2.0, 0), (width - 1, 0), (width - 1, height / 2.0), (width - 1, height - 1),
(width / 2.0, height - 1), (0, height - 1), (0, height / 2.0)]
pointsAvg = np.array([(0, 0)] * (len(self._pointsArray[0]) + len(boundPoint)), np.float32)
numImages = len(self._imageList)
pointsNorm = []
imagesNorm = []
for point, image in zip(self._pointsArray, self._imageList):
eyePointSrc = [point[self._keyPoint[0]], point[self._keyPoint[1]]]
transform = AverageFace.similarityTransform(eyePointSrc, eyePoint)
img = cv2.warpAffine(image, transform, (width, height))
points = np.reshape(point, [len(self._pointsArray[0]), 1, 2])
points = np.reshape(cv2.transform(points, transform), [len(self._pointsArray[0]), 2])
points = np.append(points, boundPoint, 0)
pointsAvg = pointsAvg + points / numImages
pointsNorm.append(points)
imagesNorm.append(img)
rect = (0, 0, width, height)
triangleList = AverageFace.calculateDelaunayTriangles(rect, pointsAvg)
output = np.zeros((width, height, 3), dtype=np.float32)
for i in range(len(imagesNorm)):
img = np.zeros([width, height, 3], dtype=np.float32)
for j in range(len(triangleList)):
tin = []
tout = []
for k in range(3):
pIn = pointsNorm[i][triangleList[j][k]]
pIn = AverageFace.constrainPoint(pIn, width, height)
pOut = pointsAvg[triangleList[j][k]]
pOut = AverageFace.constrainPoint(pOut, width, height)
tin.append(pIn)
tout.append(pOut)
AverageFace.warpTriangle(imagesNorm[i], img, tin, tout)
output = output + img
self._output = output / len(imagesNorm)
示例8: add_mask
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def add_mask(self, name, mask, affine_matrix, interpolator, storage_size=128):
""" Add a :class:`Mask` to this detected face
The mask should be the original output from :mod:`plugins.extract.mask`
If a mask with this name already exists it will be overwritten by the given
mask.
Parameters
----------
name: str
The name of the mask as defined by the :attr:`plugins.extract.mask._base.name`
parameter.
mask: numpy.ndarray
The mask that is to be added as output from :mod:`plugins.extract.mask`
It should be in the range 0.0 - 1.0 ideally with a ``dtype`` of ``float32``
affine_matrix: numpy.ndarray
The transformation matrix required to transform the mask to the original frame.
interpolator, int:
The CV2 interpolator required to transform this mask to it's original frame.
storage_size, int (optional):
The size the mask is to be stored at. Default: 128
"""
logger.trace("name: '%s', mask shape: %s, affine_matrix: %s, interpolator: %s)",
name, mask.shape, affine_matrix, interpolator)
fsmask = Mask(storage_size=storage_size)
fsmask.add(mask, affine_matrix, interpolator)
self.mask[name] = fsmask
示例9: load_reference_face
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def load_reference_face(self, image, size=64, coverage_ratio=0.625, dtype=None):
""" Align a face in the correct dimensions for reference against the output from a model.
Parameters
----------
image: numpy.ndarray
The image that contains the face to be aligned
size: int
The size of the face in pixels to be fed into the model
coverage_ratio: float, optional
the ratio of the extracted image that was used for training. Default: `0.625`
dtype: str, optional
Optionally set a ``dtype`` for the final face to be formatted in. Default: ``None``
Notes
-----
This method must be executed to get access to the following `properties`:
- :func:`reference_face`
- :func:`reference_landmarks`
- :func:`reference_matrix`
- :func:`reference_interpolators`
"""
logger.trace("Loading reference face: (size: %s, coverage_ratio: %s, dtype: %s)",
size, coverage_ratio, dtype)
self.reference["size"] = size
self.reference["padding"] = self._padding_from_coverage(size, coverage_ratio)
self.reference["matrix"] = get_align_mat(self)
face = AlignerExtract().transform(image,
self.reference["matrix"],
size,
self.reference["padding"])
self.reference["face"] = face if dtype is None else face.astype(dtype)
logger.trace("Loaded reference face. (face_shape: %s, matrix: %s)",
self.reference_face.shape, self.reference_matrix)
示例10: original_roi
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def original_roi(self):
""" :class: `numpy.ndarray`: The original region of interest of the mask in the
source frame. """
points = np.array([[0, 0],
[0, self.stored_size - 1],
[self.stored_size - 1, self.stored_size - 1],
[self.stored_size - 1, 0]], np.int32).reshape((-1, 1, 2))
matrix = cv2.invertAffineTransform(self._affine_matrix)
roi = cv2.transform(points, matrix).reshape((4, 2))
logger.trace("Returning: %s", roi)
return roi
示例11: extract
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def extract(self, image, face, size):
""" Extract a face from an image """
logger.trace("size: %s", size)
padding = int(size * 0.1875)
alignment = get_align_mat(face)
extracted = self.transform(image, alignment, size, padding)
logger.trace("Returning face and alignment matrix: (alignment_matrix: %s)", alignment)
return extracted, alignment
示例12: transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def transform(self, image, mat, size, padding=0):
""" Transform Image """
logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
interpolators = get_matrix_scaling(matrix)
retval = cv2.warpAffine(image, matrix, (size, size), flags=interpolators[0])
return retval
示例13: transform_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def transform_points(self, points, mat, size, padding=0):
""" Transform points along matrix """
logger.trace("points: %s, matrix: %s, size: %s. padding: %s", points, mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, matrix, points.shape)
retval = np.squeeze(points)
logger.trace("Returning: %s", retval)
return retval
示例14: get_original_roi
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def get_original_roi(self, mat, size, padding=0):
""" Return the square aligned box location on the original image """
logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
points = np.array([[0, 0], [0, size - 1], [size - 1, size - 1], [size - 1, 0]], np.int32)
points = points.reshape((-1, 1, 2))
matrix = cv2.invertAffineTransform(matrix)
logger.trace("Returning: (points: %s, matrix: %s", points, matrix)
return cv2.transform(points, matrix)
示例15: _rotate_face
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import transform [as 别名]
def _rotate_face(face, rotation_matrix):
""" Rotates the detection bounding box around the given rotation matrix.
Parameters
----------
face: :class:`DetectedFace`
A :class:`DetectedFace` containing the `x`, `w`, `y`, `h` detection bounding box
points.
rotation_matrix: numpy.ndarray
The rotation matrix to rotate the given object by.
Returns
-------
:class:`DetectedFace`
The same class with the detection bounding box points rotated by the given matrix.
"""
logger.trace("Rotating face: (face: %s, rotation_matrix: %s)", face, rotation_matrix)
bounding_box = [[face.left, face.top],
[face.right, face.top],
[face.right, face.bottom],
[face.left, face.bottom]]
rotation_matrix = cv2.invertAffineTransform(rotation_matrix)
points = np.array(bounding_box, "int32")
points = np.expand_dims(points, axis=0)
transformed = cv2.transform(points, rotation_matrix).astype("int32")
rotated = transformed.squeeze()
# Bounding box should follow x, y planes, so get min/max for non-90 degree rotations
pt_x = min([pnt[0] for pnt in rotated])
pt_y = min([pnt[1] for pnt in rotated])
pt_x1 = max([pnt[0] for pnt in rotated])
pt_y1 = max([pnt[1] for pnt in rotated])
width = pt_x1 - pt_x
height = pt_y1 - pt_y
face.x = int(pt_x)
face.y = int(pt_y)
face.w = int(width)
face.h = int(height)
return face