本文整理汇总了Python中cv2.stereoRectify方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.stereoRectify方法的具体用法?Python cv2.stereoRectify怎么用?Python cv2.stereoRectify使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.stereoRectify方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_stereo_rectification_maps
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import stereoRectify [as 别名]
def compute_stereo_rectification_maps(stereo_rig, im_size, size_factor):
new_size = (int(im_size[1] * size_factor), int(im_size[0] * size_factor))
rotation1, rotation2, pose1, pose2 = \
cv2.stereoRectify(cameraMatrix1=stereo_rig.cameras[0].intrinsics.intrinsic_mat,
distCoeffs1=stereo_rig.cameras[0].intrinsics.distortion_coeffs,
cameraMatrix2=stereo_rig.cameras[1].intrinsics.intrinsic_mat,
distCoeffs2=stereo_rig.cameras[1].intrinsics.distortion_coeffs,
imageSize=(im_size[1], im_size[0]),
R=stereo_rig.cameras[1].extrinsics.rotation,
T=stereo_rig.cameras[1].extrinsics.translation,
flags=cv2.CALIB_ZERO_DISPARITY,
newImageSize=new_size
)[0:4]
map1x, map1y = cv2.initUndistortRectifyMap(stereo_rig.cameras[0].intrinsics.intrinsic_mat,
stereo_rig.cameras[0].intrinsics.distortion_coeffs,
rotation1, pose1, new_size, cv2.CV_32FC1)
map2x, map2y = cv2.initUndistortRectifyMap(stereo_rig.cameras[1].intrinsics.intrinsic_mat,
stereo_rig.cameras[1].intrinsics.distortion_coeffs,
rotation2, pose2, new_size, cv2.CV_32FC1)
return map1x, map1y, map2x, map2y
示例2: stereo_calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import stereoRectify [as 别名]
def stereo_calibrate(left_file, right_file, left_dir, left_prefix, right_dir, right_prefix, image_format, save_file, square_size, width=9, height=6):
""" Stereo calibration and rectification """
objp, leftp, rightp = load_image_points(left_dir, left_prefix, right_dir, right_prefix, image_format, square_size, width, height)
K1, D1 = load_coefficients(left_file)
K2, D2 = load_coefficients(right_file)
flag = 0
# flag |= cv2.CALIB_FIX_INTRINSIC
flag |= cv2.CALIB_USE_INTRINSIC_GUESS
ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(objp, leftp, rightp, K1, D1, K2, D2, image_size)
print("Stereo calibration rms: ", ret)
R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(K1, D1, K2, D2, image_size, R, T, flags=cv2.CALIB_ZERO_DISPARITY, alpha=0.9)
save_stereo_coefficients(save_file, K1, D1, K2, D2, R, T, E, F, R1, R2, P1, P2, Q)
示例3: calibrate_cameras
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import stereoRectify [as 别名]
def calibrate_cameras(self):
"""Calibrate cameras based on found chessboard corners."""
criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
100, 1e-5)
flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST +
cv2.CALIB_SAME_FOCAL_LENGTH)
calib = StereoCalibration()
(calib.cam_mats["left"], calib.dist_coefs["left"],
calib.cam_mats["right"], calib.dist_coefs["right"],
calib.rot_mat, calib.trans_vec, calib.e_mat,
calib.f_mat) = cv2.stereoCalibrate(self.object_points,
self.image_points["left"],
self.image_points["right"],
self.image_size,
calib.cam_mats["left"],
calib.dist_coefs["left"],
calib.cam_mats["right"],
calib.dist_coefs["right"],
calib.rot_mat,
calib.trans_vec,
calib.e_mat,
calib.f_mat,
criteria=criteria,
flags=flags)[1:]
(calib.rect_trans["left"], calib.rect_trans["right"],
calib.proj_mats["left"], calib.proj_mats["right"],
calib.disp_to_depth_mat, calib.valid_boxes["left"],
calib.valid_boxes["right"]) = cv2.stereoRectify(calib.cam_mats["left"],
calib.dist_coefs["left"],
calib.cam_mats["right"],
calib.dist_coefs["right"],
self.image_size,
calib.rot_mat,
calib.trans_vec,
flags=0)
for side in ("left", "right"):
(calib.undistortion_map[side],
calib.rectification_map[side]) = cv2.initUndistortRectifyMap(
calib.cam_mats[side],
calib.dist_coefs[side],
calib.rect_trans[side],
calib.proj_mats[side],
self.image_size,
cv2.CV_32FC1)
# This is replaced because my results were always bad. Estimates are
# taken from the OpenCV samples.
width, height = self.image_size
focal_length = 0.8 * width
calib.disp_to_depth_mat = np.float32([[1, 0, 0, -0.5 * width],
[0, -1, 0, 0.5 * height],
[0, 0, 0, -focal_length],
[0, 0, 1, 0]])
return calib