本文整理汇总了Python中cv2.solvePnPRansac方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.solvePnPRansac方法的具体用法?Python cv2.solvePnPRansac怎么用?Python cv2.solvePnPRansac使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.solvePnPRansac方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_pose_error
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def compute_pose_error(kpts1, kpts2_3d_2, matches, vis1, vis2, T_2to1, K1,
reproj_thresh):
valid = vis1[matches[:, 0]] & vis2[matches[:, 1]]
matches = matches[valid]
failure = (None, None)
if len(matches) < 4:
return failure
kpts1 = kpts1[matches[:, 0]].astype(np.float32).reshape((-1, 1, 2))
kpts2_3d_2 = kpts2_3d_2[matches[:, 1]].reshape((-1, 1, 3))
success, R_vec, t, inliers = cv2.solvePnPRansac(
kpts2_3d_2, kpts1, K1, np.zeros(4), flags=cv2.SOLVEPNP_P3P,
iterationsCount=1000, reprojectionError=reproj_thresh)
if not success:
return failure
R, _ = cv2.Rodrigues(R_vec)
t = t[:, 0]
error_t = np.linalg.norm(t - T_2to1[:3, 3])
error_R = angle_error(R, T_2to1[:3, :3])
return error_t, error_R
示例2: get_vectors
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def get_vectors(image, points, mtx, dist):
# order points
points = _order_points(points)
# set up criteria, image, points and axis
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
imgp = np.array(points, dtype='float32')
objp = np.array([[0.,0.,0.],[1.,0.,0.],
[1.,1.,0.],[0.,1.,0.]], dtype='float32')
# calculate rotation and translation vectors
cv2.cornerSubPix(gray,imgp,(11,11),(-1,-1),criteria)
rvecs, tvecs, _ = cv2.solvePnPRansac(objp, imgp, mtx, dist)
return rvecs, tvecs
示例3: forward
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def forward(ctx, pts2d, pts3d, K, ini_pose=None):
bs = pts2d.size(0)
n = pts2d.size(1)
device = pts2d.device
pts3d_np = np.array(pts3d.detach().cpu())
K_np = np.array(K.detach().cpu())
P_6d = torch.zeros(bs,6,device=device)
for i in range(bs):
pts2d_i_np = np.ascontiguousarray(pts2d[i].detach().cpu()).reshape((n,1,2))
if ini_pose is None:
_, rvec0, T0, _ = cv.solvePnPRansac(objectPoints=pts3d_np, imagePoints=pts2d_i_np, cameraMatrix=K_np, distCoeffs=None, flags=cv.SOLVEPNP_ITERATIVE, confidence=0.9999 ,reprojectionError=3)
else:
rvec0 = np.array(ini_pose[i, 0:3].cpu().view(3, 1))
T0 = np.array(ini_pose[i, 3:6].cpu().view(3, 1))
_, rvec, T = cv.solvePnP(objectPoints=pts3d_np, imagePoints=pts2d_i_np, cameraMatrix=K_np, distCoeffs=None, flags=cv.SOLVEPNP_ITERATIVE, useExtrinsicGuess=True, rvec=rvec0, tvec=T0)
angle_axis = torch.tensor(rvec,device=device,dtype=torch.float).view(1, 3)
T = torch.tensor(T,device=device,dtype=torch.float).view(1, 3)
P_6d[i,:] = torch.cat((angle_axis,T),dim=-1)
ctx.save_for_backward(pts2d,P_6d,pts3d,K)
return P_6d
示例4: pnp_ransac
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def pnp_ransac(self,rgb_aug_test,img_prob_ori,non_zero,v1,v2,u1,u2):
rgb_aug_crop =rgb_aug_test[v1:v2,u1:u2]
xyz = np.copy(rgb_aug_crop)
xyz =xyz/255
xyz = xyz*2-1
xyz[:,:,0]=xyz[:,:,0]*self.obj_scale[0]+self.obj_ct[0]
xyz[:,:,1]=xyz[:,:,1]*self.obj_scale[1]+self.obj_ct[1]
xyz[:,:,2]=xyz[:,:,2]*self.obj_scale[2]+self.obj_ct[2]
confidence_mask = img_prob_ori< self.th_i
valid_mask = np.logical_and(non_zero ,confidence_mask)
vu_list_s= np.where(valid_mask==1)
n_pts_s=len(vu_list_s[0])
img_pts_s = np.zeros((n_pts_s,2))
obj_pts_s=xyz[vu_list_s[0],vu_list_s[1]]
img_pts_s[:]=np.stack( (vu_list_s[1],vu_list_s[0]),axis=1) #u,v order
img_pts_s[:,0]=img_pts_s[:,0]+u1
img_pts_s[:,1]=img_pts_s[:,1]+v1
img_pts_s = np.ascontiguousarray(img_pts_s[:,:2]).reshape((n_pts_s,1,2))
if(n_pts_s <6):
return np.eye(3),np.array([0,0,0]),valid_mask,-1
ret, rvec, tvec,inliers = cv2.solvePnPRansac(obj_pts_s, img_pts_s, self.camK,None,\
flags=cv2.SOLVEPNP_EPNP,reprojectionError=3,iterationsCount=100)
if(inliers is None):
return np.eye(3),np.array([0,0,0]),-1,-1
else:
rot_pred = np.eye(3)
tra_pred = tvec[:,0]
cv2.Rodrigues(rvec, rot_pred)
return rot_pred,tra_pred,valid_mask,len(inliers)
示例5: solve_pnp_ransac
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def solve_pnp_ransac(pts3d, pts, intrinsic_matrix):
val, rvec, tvec, inliers = cv2.solvePnPRansac(
np.array(pts3d), np.array(pts),
intrinsic_matrix, None, None, None,
False, 50, 2.0, 0.99, None)
if inliers is None or len(inliers) < 5:
return None, None
T = g2o.Isometry3d(cv2.Rodrigues(rvec)[0], tvec)
return T, inliers.ravel()
示例6: pnp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def pnp(points_3d, points_2d, camera_matrix,method=cv2.SOLVEPNP_ITERATIVE):
try:
dist_coeffs = pnp.dist_coeffs
except:
dist_coeffs = np.zeros(shape=[8, 1], dtype='float64')
assert points_3d.shape[0] == points_2d.shape[0], 'points 3D and points 2D must have same number of vertices'
if method==cv2.SOLVEPNP_EPNP:
points_3d=np.expand_dims(points_3d, 0)
points_2d=np.expand_dims(points_2d, 0)
points_2d = np.ascontiguousarray(points_2d.astype(np.float64))
points_3d = np.ascontiguousarray(points_3d.astype(np.float64))
camera_matrix = camera_matrix.astype(np.float64)
# _, R_exp, t = cv2.solvePnP(points_3d,
# points_2d,
# camera_matrix,
# dist_coeffs,
# flags=method)
# # , None, None, False, cv2.SOLVEPNP_UPNP)
_, R_exp, t, _ = cv2.solvePnPRansac(points_3d,
points_2d,
camera_matrix,
dist_coeffs,
)
R, _ = cv2.Rodrigues(R_exp)
# trans_3d=np.matmul(points_3d,R.transpose())+t.transpose()
# if np.max(trans_3d[:,2]<0):
# R=-R
# t=-t
return np.concatenate([R, t], axis=-1)
示例7: find_current_pose
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def find_current_pose(self, object_points, intrinsics):
"""
Find camera pose relative to object using current image point set,
object_points are treated as world coordinates
"""
success, rotation_vector, translation_vector = cv2.solvePnPRansac(object_points, self.current_image_points,
intrinsics.intrinsic_mat,
intrinsics.distortion_coeffs,
flags=cv2.SOLVEPNP_ITERATIVE)[0:3]
if success:
self.poses.append(Pose(rotation=rotation_vector, translation_vector=translation_vector))
else:
self.poses.append(None)
return success
示例8: solve_pnp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def solve_pnp(K: torch.Tensor, x_2d: torch.Tensor, X_3d_w: torch.Tensor, reproj_thres=2.0):
"""
Solve PnP problem with OpenCV lib
:param K: camera intrinsic matrix, dim: (N, 3x3) or (3, 3)
:param x_2d: 2D coordinates, dim: (N, H, W, 2), (H, W, 2),
:param X_3d_w: 3D world coordinates, dim: (N, H, W, 2), (H, W, 3)
:return:
"""
keep_dim_n = False
if K.dim() == 2:
keep_dim_n = True
K = K.unsqueeze(0)
x_2d = x_2d.unsqueeze(0)
X_3d_w = X_3d_w.unsqueeze(0)
N, H, W = x_2d.shape[:3]
K = K.detach().cpu().numpy()
x_2d = x_2d.detach().cpu().numpy()
X_3d_w = X_3d_w.view(N, -1, 3).detach().cpu().numpy()
poses = []
x_2d = x_2d[0].reshape(1, H*W, 2)
dist = np.zeros(4)
for n in range(N):
k = K[n]
X_3d = X_3d_w[n].reshape(1, H*W, 3)
_, R_res, t_res, _ = cv2.solvePnPRansac(X_3d, x_2d, k, dist, reprojectionError=reproj_thres)
R_res, _ = cv2.Rodrigues(R_res)
pnp_pose = np.eye(4, dtype=np.float32)
pnp_pose[:3, :3] = R_res
pnp_pose[:3, 3] = t_res.ravel()
poses.append(pnp_pose)
poses = torch.cat([torch.from_numpy(pose) for pose in poses])
if keep_dim_n is True:
poses.squeeze(0)
return poses
示例9: do_pnp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def do_pnp(kpts, lms, query_info, config):
kpts = kpts.astype(np.float32).reshape((-1, 1, 2))
lms = lms.astype(np.float32).reshape((-1, 1, 3))
success, R_vec, t, inliers = cv2.solvePnPRansac(
lms, kpts, query_info.K, np.array([query_info.dist, 0, 0, 0]),
iterationsCount=5000, reprojectionError=config['reproj_error'],
flags=cv2.SOLVEPNP_P3P)
if success:
inliers = inliers[:, 0]
num_inliers = len(inliers)
inlier_ratio = len(inliers) / len(kpts)
success &= num_inliers >= config['min_inliers']
ret, R_vec, t = cv2.solvePnP(
lms[inliers], kpts[inliers], query_info.K,
np.array([query_info.dist, 0, 0, 0]), rvec=R_vec, tvec=t,
useExtrinsicGuess=True, flags=cv2.SOLVEPNP_ITERATIVE)
assert ret
query_T_w = np.eye(4)
query_T_w[:3, :3] = cv2.Rodrigues(R_vec)[0]
query_T_w[:3, 3] = t[:, 0]
w_T_query = np.linalg.inv(query_T_w)
ret = LocResult(success, num_inliers, inlier_ratio, w_T_query)
else:
inliers = np.empty((0,), np.int32)
ret = loc_failure
return ret, inliers
示例10: cube
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def cube(img):
#img_in = cv2.imread("Picture 27.jpg")
#img = cv2.resize(img_in,None,fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC)
#cv2.imshow('img',img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#cv2.imshow('gray',gray)
ret, corners = cv2.findChessboardCorners(gray, (8,7),None)
# print ret,corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((7*8,3), np.float32)
objp[:,:2] = np.mgrid[0:8,0:7].T.reshape(-1,2)
#axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)
axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0],
[0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])
if ret == True:
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
# Find the rotation and translation vectors.
rvecs, tvecs, inliers = cv2.solvePnPRansac(objp, corners, mtx, dist)
# project 3D points to image plane
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
#print imgpts
img = draw2(img,corners,imgpts)
return img
示例11: flow2se3
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def flow2se3(depth_object, flow, mask_image, K):
"""
give flow from object to image, calculate the pose
:param depth_object: height x width, ndarray the depth map of object image.
:param flow: height x width x (w, h) flow from object image to real image
:param mask_image: height x width, the mask of real image
:param K: 3x3 intrinsic matrix
:return: se3: 3x4 matrix.
"""
height = depth_object.shape[0]
width = depth_object.shape[1]
assert mask_image.shape == (height, width)
valid_in_object = (depth_object != 0).flatten()
all_op = backproject_camera(depth_object, intrinsic_matrix=K)
# all_op = all_op.reshape((3, width, height))
x, y = np.meshgrid(np.arange(width), np.arange(height))
x = x.astype(np.float64)
y = y.astype(np.float64)
x += flow[:, :, 0]
y += flow[:, :, 1]
x = x.flatten()
y = y.flatten()
all_ip = np.vstack((x, y))
valid_in_image = (mask_image != 0).flatten()
valid = np.where(np.logical_and(valid_in_object, valid_in_image))[0]
objectPoints = all_op[:, valid].astype(np.float64).transpose()
imagePoints = all_ip[:, valid].astype(np.float64).transpose()
convex, rvec, tvec, inliers = cv2.solvePnPRansac(objectPoints, imagePoints, K, np.zeros(4))
se3_q = np.zeros(7)
if convex:
R, _ = cv2.Rodrigues(rvec)
se3_q[:4] = RT_transform.mat2quat(R)
se3_q[4:] = tvec.flatten()
return convex, se3_q
else:
se3_q[0] = 1
return convex, se3_q
示例12: get_pose_pnp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def get_pose_pnp(rgb_curr, rgb_near, depth_curr, K):
gray_curr = rgb2gray(rgb_curr).astype(np.uint8)
gray_near = rgb2gray(rgb_near).astype(np.uint8)
height, width = gray_curr.shape
pts2d_curr, pts2d_near = feature_match(gray_curr,
gray_near) # feature matching
# dilation of depth
kernel = np.ones((4, 4), np.uint8)
depth_curr_dilated = cv2.dilate(depth_curr, kernel)
# extract 3d pts
pts3d_curr = []
pts2d_near_filtered = [
] # keep only feature points with depth in the current frame
for i, pt2d in enumerate(pts2d_curr):
# print(pt2d)
u, v = pt2d[0], pt2d[1]
z = depth_curr_dilated[v, u]
if z > 0:
xyz_curr = convert_2d_to_3d(u, v, z, K)
pts3d_curr.append(xyz_curr)
pts2d_near_filtered.append(pts2d_near[i])
# the minimal number of points accepted by solvePnP is 4:
if len(pts3d_curr) >= 4 and len(pts2d_near_filtered) >= 4:
pts3d_curr = np.expand_dims(np.array(pts3d_curr).astype(np.float32),
axis=1)
pts2d_near_filtered = np.expand_dims(
np.array(pts2d_near_filtered).astype(np.float32), axis=1)
# ransac
ret = cv2.solvePnPRansac(pts3d_curr,
pts2d_near_filtered,
K,
distCoeffs=None)
success = ret[0]
rotation_vector = ret[1]
translation_vector = ret[2]
return (success, rotation_vector, translation_vector)
else:
return (0, None, None)
示例13: getP
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def getP(self, dst):
"""
dst: 标记物关键点
return self.MTX,self.DIST,self.RVEC,self.TVEC:
反馈 内参、畸变系数,旋转向量,位移向量
"""
if self.SceneImage is None:
return None
corners = np.float32([dst[1], dst[0], dst[2], dst[3]])
gray = cv2.cvtColor(self.SceneImage, cv2.COLOR_BGR2GRAY)
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (1,0,0), (1,1,0)
objp = np.zeros((2*2,3), np.float32)
objp[:,:2] = np.mgrid[0:2,0:2].T.reshape(-1,2)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
if self.PTimes < self.PCount or self.PCount == 0:
# Arrays to store object points and image points from all the images.
objpoints = self.OBJPoints # 3d point in real world space
imgpoints = self.IMGPoints # 2d points in image plane.
if len(imgpoints) == 0 or np.sum(np.abs(imgpoints[-1] - corners2)) != 0:
objpoints.append(objp)
imgpoints.append(corners2)
# Find mtx, dist, rvecs, tvecs
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
if not ret:
self.PTimes += 1
return None
self.OBJPoints = objpoints
self.IMGPoints = imgpoints
self.MTX = mtx
self.DIST = dist
self.RVEC = rvecs[0]
self.TVEC = tvecs[0]
else:
# Find the rotation and translation vectors.
_, rvec, tvec, _= cv2.solvePnPRansac(objp, corners2, self.MTX, self.DIST)
self.RVEC = rvec
self.TVEC = tvec
self.PTimes += 1
return self.MTX,self.DIST,self.RVEC,self.TVEC
示例14: compute_pose_pnp_from_valid_pixels
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def compute_pose_pnp_from_valid_pixels(gt_Tcws, query_X_w, rand_R, scene_center, query_K, valid_pix_idx, pnp_x_2d,
repro_thres):
N, _, H, W = query_X_w.shape
# recover original scene coordinates
query_X_3d_w = query_X_w.permute(0, 2, 3, 1).view(N, -1, 3)
rand_R_t = torch.transpose(rand_R, 1, 2).to(query_X_3d_w.device)
query_X_3d_w = batched_transpose(rand_R_t, torch.zeros(N, 3).to(query_X_3d_w.device), query_X_3d_w)
query_X_3d_w += scene_center.view(N, 1, 3)
query_X_3d_w = recover_original_scene_coordinates(query_X_w, rand_R, scene_center)
query_X_3d_w = query_X_3d_w.view(N, H, W, 3).squeeze(0).detach().cpu().numpy()
# select valid pixels with input index
x, y = valid_pix_idx
x_2d_valid = pnp_x_2d[y, x, :]
query_X_3d_valid = query_X_3d_w[y, x, :]
selected_pixels = query_X_3d_valid.shape[0]
query_X_3d_valid = query_X_3d_valid.reshape(1, selected_pixels, 3)
x_2d_valid = x_2d_valid.reshape(1, selected_pixels, 2)
# run Ransac PnP
dist = np.zeros(4)
k = query_K.squeeze(0).detach().cpu().numpy()
retval, R_res, t_res, ransc_inlier = cv2.solvePnPRansac(query_X_3d_valid, x_2d_valid, k, dist,
reprojectionError=repro_thres, )
# print(retval)
# _, R_res, t_res = cv2.solvePnP(query_X_3d_valid, x_2d_valid, k, dist)#, flags=cv2.SOLVEPNP_EPNP)
R_res, _ = cv2.Rodrigues(R_res)
pnp_pose = np.eye(4, dtype=np.float32)
pnp_pose[:3, :3] = R_res
pnp_pose[:3, 3] = t_res.ravel()
# measure accuracy
gt_pose = gt_Tcws.squeeze(0).detach().cpu().numpy()
R_acc = rel_rot_angle(pnp_pose, gt_pose)
t_acc = rel_distance(pnp_pose, gt_pose)
# ransc_inlier = None
return R_acc, t_acc, pnp_pose, ransc_inlier
示例15: update_pose
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import solvePnPRansac [as 别名]
def update_pose(matches, new_index):
new_image = proj.image_list[new_index]
# Build a list of existing 3d ned vs. 2d uv coordinates for the
# new image so we can run solvepnp() and derive an initial pose
# estimate relative to the already placed group.
new_ned_list = []
new_uv_list = []
for i, match in enumerate(matches):
# only proceed with 'located' features
if match[0] != None:
# check if this match refers to the new image
for m in match[1:]:
if m[0] == new_index:
new_ned_list.append(match[0])
new_uv_list.append(new_image.uv_list[m[1]])
break
print "Number of solvepnp coordinates:", len(new_ned_list)
# debug
# f = open('ned.txt', 'wb')
# for ned in new_ned_list:
# f.write("%.2f %.2f %.2f\n" % (ned[0], ned[1], ned[2]))
# f = open('uv.txt', 'wb')
# for uv in new_uv_list:
# f.write("%.1f %.1f\n" % (uv[0], uv[1]))
# pose new image here:
rvec, tvec = new_image.get_proj()
#print 'new_ned_list', new_ned_list
#print 'new_uv_list', new_uv_list
(result, rvec, tvec, inliers) \
= cv2.solvePnPRansac(np.float32(new_ned_list), np.float32(new_uv_list),
proj.cam.get_K(scale), None,
rvec, tvec, useExtrinsicGuess=True)
print 'solvePnPRansac:', result
if result:
Rned2cam, jac = cv2.Rodrigues(rvec)
pos = -np.matrix(Rned2cam[:3,:3]).T * np.matrix(tvec)
newned = pos.T[0].tolist()[0]
# Our Rcam matrix (in our ned coordinate system) is body2cam * Rned,
# so solvePnP returns this combination. We can extract Rned by
# premultiplying by cam2body aka inv(body2cam).
cam2body = new_image.get_cam2body()
Rned2body = cam2body.dot(Rned2cam)
Rbody2ned = np.matrix(Rned2body).T
(yaw, pitch, roll) = transformations.euler_from_matrix(Rbody2ned, 'rzyx')
print "original pose:", new_image.get_camera_pose()
#print "original pose:", proj.image_list[30].get_camera_pose()
new_image.set_camera_pose_sba(ned=newned,
ypr=[yaw*r2d, pitch*r2d, roll*r2d])
new_image.save_meta()
print "solvepnp() pose:", new_image.get_camera_pose_sba()
return result