本文整理汇总了Python中cv2.setNumThreads方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.setNumThreads方法的具体用法?Python cv2.setNumThreads怎么用?Python cv2.setNumThreads使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.setNumThreads方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(
self,
root,
split,
ignore_label,
mean_bgr,
augment=True,
base_size=None,
crop_size=321,
scales=(1.0),
flip=True,
):
self.root = root
self.split = split
self.ignore_label = ignore_label
self.mean_bgr = np.array(mean_bgr)
self.augment = augment
self.base_size = base_size
self.crop_size = crop_size
self.scales = scales
self.flip = flip
self.files = []
self._set_files()
cv2.setNumThreads(0)
示例2: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(self, root, split, mean, std, base_size=None, augment=True, val=False,
crop_size=321, scale=True, flip=True, rotate=False, blur=False, return_id=False):
self.root = root
self.split = split
self.mean = mean
self.std = std
self.augment = augment
self.crop_size = crop_size
if self.augment:
self.base_size = base_size
self.scale = scale
self.flip = flip
self.rotate = rotate
self.blur = blur
self.val = val
self.files = []
self._set_files()
self.to_tensor = transforms.ToTensor()
self.normalize = transforms.Normalize(mean, std)
self.return_id = return_id
cv2.setNumThreads(0)
示例3: run_training
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def run_training(train_module, train_name, cudnn_benchmark=True):
"""Run a train scripts in train_settings.
args:
train_module: Name of module in the "train_settings/" folder.
train_name: Name of the train settings file.
cudnn_benchmark: Use cudnn benchmark or not (default is True).
"""
# This is needed to avoid strange crashes related to opencv
cv.setNumThreads(0)
torch.backends.cudnn.benchmark = cudnn_benchmark
print('Training: {} {}'.format(train_module, train_name))
settings = ws_settings.Settings()
settings.module_name = train_module
settings.script_name = train_name
settings.project_path = 'ltr/{}/{}'.format(train_module, train_name)
expr_module = importlib.import_module('ltr.train_settings.{}.{}'.format(train_module, train_name))
expr_func = getattr(expr_module, 'run')
expr_func(settings)
示例4: configure_hacks
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def configure_hacks(config={}, **kw):
"""
Configures hacks to fix global settings in external modules
Args:
config (dict): exected to contain they key "workers" with an
integer value equal to the number of dataloader processes.
**kw: can also be used to specify config items
Modules we currently hack:
* cv2 - fix thread count
"""
config = _update_defaults(config, kw)
if config['workers'] > 0:
import cv2
cv2.setNumThreads(0)
示例5: _check_thread_safety
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def _check_thread_safety(harn):
"""
References:
https://github.com/pytorch/pytorch/issues/1355
"""
import cv2
n_workers = max(loader.num_workers for loader in harn.loaders.values()
if loader is not None)
if n_workers > 1:
n_threads = cv2.getNumThreads()
if n_threads > 1:
msg = ('OpenCV threadcount of {} is non-zero and a DataLoader '
'is using {} workers. This may cause deadlocks '
'To be safe use cv2.setNumThreads(0)').format(
n_threads, n_workers)
warnings.warn(msg, RuntimeWarning)
harn.warn(msg)
示例6: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(
self,
root,
split="train",
base_size=513,
crop_size=321,
mean=(104.008, 116.669, 122.675),
scale=(0.5, 1.5),
warp=True,
flip=True,
preload=False,
visibility_mask=None,
):
self.root = root
self.split = split
self.base_size = base_size
self.crop_size = crop_size
self.mean = np.array(mean)
self.scale = scale
self.warp = warp
self.flip = flip
self.preload = preload
self.files = np.array([])
self.images = []
self.labels = []
self.ignore_label = None
self.visibility_mask = visibility_mask
self._set_files()
if self.preload:
self._preload_data()
cv2.setNumThreads(0)
示例7: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(
self,
root,
split="train",
base_size=513,
crop_size=321,
mean=(104.008, 116.669, 122.675),
scale=(0.5, 0.75, 1.0, 1.25, 1.5),
warp=True,
flip=True,
preload=False,
):
self.root = root
self.split = split
self.base_size = base_size
self.crop_size = crop_size
self.mean = np.array(mean)
self.scale = scale
self.warp = warp
self.flip = flip
self.preload = preload
self.files = []
self.images = []
self.labels = []
self.ignore_label = None
self._set_files()
if self.preload:
self._preload_data()
cv2.setNumThreads(0)
示例8: get_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def get_image(self, idx):
assert False, 'DO NOT USE cv2 NOW, AVOID DEADLOCK'
import cv2
# cv2.setNumThreads(0) # for solving deadlock when switching epoch
img_file = os.path.join(self.image_dir, '%06d.png' % idx)
assert os.path.exists(img_file)
return cv2.imread(img_file) # (H, W, 3) BGR mode
示例9: _Pool_initialize_worker
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def _Pool_initialize_worker(augseq, seed_start):
# pylint: disable=invalid-name, protected-access
# Not using this seems to have caused infinite hanging in the case
# of gaussian blur on at least MacOSX.
# It is also in most cases probably not sensible to use multiple
# threads while already running augmentation in multiple processes.
cv2.setNumThreads(0)
if seed_start is None:
# pylint falsely thinks in older versions that
# multiprocessing.current_process() was not callable, see
# https://github.com/PyCQA/pylint/issues/1699
# pylint: disable=not-callable
process_name = _get_context().current_process().name
# pylint: enable=not-callable
# time_ns() exists only in 3.7+
if sys.version_info[0] == 3 and sys.version_info[1] >= 7:
seed_offset = time.time_ns()
else:
seed_offset = int(time.time() * 10**6) % 10**6
seed = hash(process_name) + seed_offset
_reseed_global_local(seed, augseq)
Pool._WORKER_SEED_START = seed_start
Pool._WORKER_AUGSEQ = augseq
# not sure if really necessary, but shouldn't hurt either
Pool._WORKER_AUGSEQ.localize_random_state_()
# This could be a classmethod or staticmethod of Pool in 3.x, but in 2.7 that
# leads to pickle errors.
示例10: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __getitem__(self, idx):
cv2.setNumThreads(0) # some hack to make sure pyTorch doesn't deadlock. Found at https://github.com/pytorch/pytorch/issues/1355. Seems to work for me
# Get label filename
label_filename = self.starts[idx]
label = cv2.imread(str(os.path.join(self.base_dir, 'Labels', label_filename))) # Shape: [H x W x 3]
label = label[..., 0] == 255 # Turn it into a {0,1} binary mask with shape: [H x W]
label = label.astype(np.uint8)
# find corresponding image file
img_file = label_filename.split('_')[0] + '.jpg'
img = cv2.imread(str(os.path.join(self.base_dir, 'Images', img_file)))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# These might not be the same size. resize them to the smaller one
if label.shape[0] < img.shape[0]:
new_size = label.shape[::-1] # (W, H)
else:
new_size = img.shape[:2][::-1]
label = cv2.resize(label, new_size)
img = cv2.resize(img, new_size)
img_crop, morphed_label_crop, label_crop = self.transform(img, label)
return {
'rgb' : img_crop,
'initial_masks' : morphed_label_crop,
'labels' : label_crop
}
示例11: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(self, width, height):
"""
Args:
width and height are only used to determine the
output aspect ratio, not the actual output size
"""
self.ops = []
cv2.setNumThreads(0)
self.width = float(width)
self.height = float(height)
示例12: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(self, config=None, split=None, purpose=None, preload=False):
super(_Coco, self).__init__()
self.split = split
self.purpose = purpose
self.root = config.dataset_root
self.single_mode = hasattr(config, "single_mode") and config.single_mode
# always used (labels fields used to make relevancy mask for train)
self.gt_k = config.gt_k
self.pre_scale_all = config.pre_scale_all
self.pre_scale_factor = config.pre_scale_factor
self.input_sz = config.input_sz
self.include_rgb = config.include_rgb
self.no_sobel = config.no_sobel
assert ((not hasattr(config, "mask_input")) or (not config.mask_input))
self.mask_input = False
# only used if purpose is train
if purpose == "train":
self.use_random_scale = config.use_random_scale
if self.use_random_scale:
self.scale_max = config.scale_max
self.scale_min = config.scale_min
self.jitter_tf = tvt.ColorJitter(brightness=config.jitter_brightness,
contrast=config.jitter_contrast,
saturation=config.jitter_saturation,
hue=config.jitter_hue)
self.flip_p = config.flip_p # 0.5
self.use_random_affine = config.use_random_affine
if self.use_random_affine:
self.aff_min_rot = config.aff_min_rot
self.aff_max_rot = config.aff_max_rot
self.aff_min_shear = config.aff_min_shear
self.aff_max_shear = config.aff_max_shear
self.aff_min_scale = config.aff_min_scale
self.aff_max_scale = config.aff_max_scale
assert (not preload)
self.files = []
self.images = []
self.labels = []
if not osp.exists(config.fine_to_coarse_dict):
generate_fine_to_coarse(config.fine_to_coarse_dict)
with open(config.fine_to_coarse_dict, "rb") as dict_f:
d = pickle.load(dict_f)
self._fine_to_coarse_dict = d["fine_index_to_coarse_index"]
cv2.setNumThreads(0)
示例13: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import setNumThreads [as 别名]
def __init__(self, config=None, split=None, purpose=None, preload=False):
super(_Potsdam, self).__init__()
self.split = split
self.purpose = purpose
self.root = config.dataset_root
self.single_mode = hasattr(config, "single_mode") and config.single_mode
assert (os.path.exists(os.path.join(self.root, "debugged.out")))
# always used (labels fields used to make relevancy mask for train)
self.gt_k = config.gt_k
self.pre_scale_all = config.pre_scale_all
self.pre_scale_factor = config.pre_scale_factor
self.input_sz = config.input_sz
self.include_rgb = config.include_rgb
self.no_sobel = config.no_sobel
# only used if purpose is train
if purpose == "train":
self.use_random_scale = config.use_random_scale
if self.use_random_scale:
self.scale_max = config.scale_max
self.scale_min = config.scale_min
self.jitter_tf = tvt.ColorJitter(brightness=config.jitter_brightness,
contrast=config.jitter_contrast,
saturation=config.jitter_saturation,
hue=config.jitter_hue)
self.flip_p = config.flip_p # 0.5
self.use_random_affine = config.use_random_affine
if self.use_random_affine:
self.aff_min_rot = config.aff_min_rot
self.aff_max_rot = config.aff_max_rot
self.aff_min_shear = config.aff_min_shear
self.aff_max_shear = config.aff_max_shear
self.aff_min_scale = config.aff_min_scale
self.aff_max_scale = config.aff_max_scale
self.preload = preload
self.files = []
self.images = []
self.labels = []
self._set_files()
if self.preload:
self._preload_data()
cv2.setNumThreads(0)