本文整理汇总了Python中cv2.normalize方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.normalize方法的具体用法?Python cv2.normalize怎么用?Python cv2.normalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.normalize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: proc_oflow
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def proc_oflow(images):
h, w = images.shape[-3:-1]
processed_images = []
for image in images:
hsv = np.zeros((h, w, 3), dtype=np.uint8)
hsv[:, :, 0] = 255
hsv[:, :, 1] = 255
mag, ang = cv2.cartToPolar(image[..., 0], image[..., 1])
hsv[..., 0] = ang*180/np.pi/2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
processed_image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
processed_images.append(processed_image)
return np.stack(processed_images)
示例2: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def __init__(self, parent, capture, fps=24):
wx.Panel.__init__(self, parent)
self.capture = capture2
ret, frame = self.capture.read()
sal = mr_sal.saliency(frame)
sal = cv2.resize(sal,(320,240)).astype(sp.uint8)
sal = cv2.normalize(sal, None, 0, 255, cv2.NORM_MINMAX)
outsal = cv2.applyColorMap(sal,cv2.COLORMAP_HSV)
self.bmp = wx.BitmapFromBuffer(320,240, outsal.astype(sp.uint8))
self.timer = wx.Timer(self)
self.timer.Start(1000./fps)
self.Bind(wx.EVT_PAINT, self.OnPaint)
self.Bind(wx.EVT_TIMER, self.NextFrame)
示例3: normalize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def normalize(
src: List[int],
alpha: int = None,
beta: int = None,
norm_type: int = None,
dtype: int = None,
mask: List[int] = None,
) -> List[int]:
"""
Normalizes arrays
"""
src = src.astype("float")
dst = np.zeros(src.shape) # Output image array
parameters = {k: v for k, v in locals().items() if v is not None}
cv2.normalize(**parameters)
return dst
示例4: _update_mean_shift_bookkeeping
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def _update_mean_shift_bookkeeping(self, frame, box_grouped):
"""Preprocess all valid bounding boxes for mean-shift tracking
This method preprocesses all relevant bounding boxes (those that
have been detected by both mean-shift tracking and saliency) for
the next mean-shift step.
:param frame: current RGB input frame
:param box_grouped: list of bounding boxes
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
self.object_roi = []
self.object_box = []
for box in box_grouped:
(x, y, w, h) = box
hsv_roi = hsv[y:y + h, x:x + w]
mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
self.object_roi.append(roi_hist)
self.object_box.append(box)
示例5: calculate_roi_hist
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def calculate_roi_hist(self, frame):
"""Calculates region of interest histogram.
Args:
frame: The np.array image frame to calculate ROI histogram for.
"""
(x, y, w, h) = self.box
roi = frame[y:y + h, x:x + w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0, 1], mask, [180, 255],
[0, 180, 0, 255])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
self.roi_hist = roi_hist
# Run this every frame
示例6: load_frames
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def load_frames(file_path, resize_to=224.0):
# Saved numpy files should be read in with format (time, height, width, channel)
frames = np.load(file_path)
t, h, w, c = frames.shape
# Resize and scale images for the network structure
#TODO: maybe use opencv to normalize the image
#frames = cv.normalize(frames, None, alpha=0, beta=1, norm_type=cv.NORM_MINMAX, dtype=cv.CV_32F)
frames_out = []
need_resize = False
if w < resize_to or h < resize_to:
d = resize_to - min(w, h)
sc = 1 + d / min(w, h)
need_resize = True
for i in range(t):
img = frames[i, :, :, :]
if need_resize:
img = cv.resize(img, dsize=(0, 0), fx=sc, fy=sc)
img = (img / 255.) * 2 - 1
frames_out.append(img)
return np.asarray(frames_out, dtype=np.float32)
示例7: compute_dense_optical_flow
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def compute_dense_optical_flow(prev_image, current_image):
old_shape = current_image.shape
prev_image_gray = cv2.cvtColor(prev_image, cv2.COLOR_BGR2GRAY)
current_image_gray = cv2.cvtColor(current_image, cv2.COLOR_BGR2GRAY)
assert current_image.shape == old_shape
hsv = np.zeros_like(prev_image)
hsv[..., 1] = 255
flow = None
flow = cv2.calcOpticalFlowFarneback(prev=prev_image_gray,
next=current_image_gray, flow=flow,
pyr_scale=0.8, levels=15, winsize=5,
iterations=10, poly_n=5, poly_sigma=0,
flags=10)
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
示例8: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def main():
src = cv2.imread('src.jpg', cv2.IMREAD_GRAYSCALE)
tpl = cv2.imread('tpl.jpg', cv2.IMREAD_GRAYSCALE)
result = cv2.matchTemplate(src, tpl, cv2.TM_CCOEFF_NORMED)
result = cv2.normalize(result, dst=None, alpha=0, beta=1,
norm_type=cv2.NORM_MINMAX, dtype=-1)
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result)
matchLoc = maxLoc
draw1 = cv2.rectangle(
src, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0)
draw2 = cv2.rectangle(
result, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0)
cv2.imshow('draw1', draw1)
cv2.imshow('draw2', draw2)
cv2.waitKey(0)
print src.shape
print tpl.shape
print result.shape
print matchLoc
示例9: capture_histogram
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def capture_histogram(path_of_sample):
# read the image
color = cv2.imread(path_of_sample)
# convert to HSV
color_hsv = cv2.cvtColor(color, cv2.COLOR_BGR2HSV)
# compute the histogram
object_hist = cv2.calcHist([color_hsv], # image
[0, 1], # channels
None, # no mask
[180, 256], # size of histogram
[0, 180, 0, 256] # channel values
)
# min max normalization
cv2.normalize(object_hist, object_hist, 0, 255, cv2.NORM_MINMAX)
return object_hist
开发者ID:PacktPublishing,项目名称:Hands-On-Machine-Learning-with-OpenCV-4,代码行数:22,代码来源:object_detection_using_color.py
示例10: generate_target
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def generate_target(object_file, target_name):
border = 20
size = [960, 720]
foreground = cv2.imread(object_file, cv2.IMREAD_UNCHANGED)
if foreground is None:
return False
cv2.normalize(foreground, foreground, 0, 255, cv2.NORM_MINMAX)
foreground = foreground.astype(numpy.uint8)
ratio = numpy.amin(numpy.divide(
numpy.subtract(size, [2*border, 2*border]), foreground.shape[0:2]))
forground_size = numpy.floor(numpy.multiply(foreground.shape[0:2], ratio)).astype(int)
foreground = cv2.resize(foreground, (forground_size[1], forground_size[0]))
foreground = image_fill(foreground,size,[0,0,0,0])
cv2.imwrite(target_name, foreground)
示例11: get_blur_im
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def get_blur_im(self):
"""downscale and blur the image"""
# preprocess image
dwnscl_factor = 4; # Hydra images' shape is divisible by 4
blr_sigma = 17; # blur the image a bit, seems to work better
new_shape = (self.img.shape[1]//dwnscl_factor, # as x,y, not row,columns
self.img.shape[0]//dwnscl_factor)
try:
dwn_gray_im = cv2.resize(self.img, new_shape)
except:
pdb.set_trace()
# apply blurring
blur_im = cv2.GaussianBlur(dwn_gray_im, (blr_sigma,blr_sigma),0)
# normalise between 0 and 255
blur_im = cv2.normalize(blur_im, None, alpha=0, beta=255,
norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
return blur_im
示例12: updateROIs
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def updateROIs(self):
#useful for resizing events
if self.Ifull.size == 0:
self.twoViews.cleanCanvas()
else:
cur = self.ui.tabWidget.currentIndex()
if cur == self.tab_keys['mask']:
I1, I2 = self.Ifull, self.Imask
elif cur == self.tab_keys['bgnd']:
I1 = self.Ifull
I2 = np.zeros_like(self.IsubtrB)
cv2.normalize(self.IsubtrB,I2,0,255,cv2.NORM_MINMAX)
else:
I1, I2 = self.Ifull, self.Ifull
qimage_roi1 = self._numpy2qimage(I1)
qimage_roi2 = self._numpy2qimage(I2)
self.twoViews.setPixmap(qimage_roi1, qimage_roi2)
示例13: normalize_nn
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def normalize_nn(transM, sigma=1):
"""
Normalize transition matrix using gaussian weighing
Input:
transM: (k,k)
sigma: var=sigma^2 of gaussian weight between elements
Output: transM: (k,k)
"""
# Make weights Gaussian and normalize
k = transM.shape[0]
transM[np.nonzero(transM)] = np.exp(
-np.square(transM[np.nonzero(transM)]) / sigma**2)
transM[np.arange(k), np.arange(k)] = 1.
normalization = np.dot(transM, np.ones(k))
# This is inefficient, bottom line is better ..
# transM = np.dot(np.diag(1. / normalization), transM)
transM = (1. / normalization).reshape((-1, 1)) * transM
return transM
示例14: consensus_vote
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def consensus_vote(votes, transM, frameEnd, iters):
"""
Perform iterative consensus voting
"""
sTime = time.time()
for t in range(iters):
votes = np.dot(transM, votes)
# normalize per frame
for i in range(frameEnd.shape[0]):
currStartF = 1 + frameEnd[i - 1] if i > 0 else 0
currEndF = frameEnd[i]
frameVotes = np.max(votes[currStartF:1 + currEndF])
votes[currStartF:1 + currEndF] /= frameVotes + (frameVotes <= 0)
eTime = time.time()
print('Consensus voting finished: %.2f s' % (eTime - sTime))
return votes
示例15: addModelHistogram
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import normalize [as 别名]
def addModelHistogram(self, model_frame, name=''):
"""Add the histogram to internal container. If the name of the object
is already present then replace that histogram with a new one.
@param model_frame the frame to add to the model, its histogram
is obtained and saved in internal list.
@param name a string representing the name of the model.
If nothing is specified then the name will be the index of the element.
"""
if(self.hist_type=='HSV'): model_frame = cv2.cvtColor(model_frame, cv2.COLOR_BGR2HSV)
elif(self.hist_type=='GRAY'): model_frame = cv2.cvtColor(model_frame, cv2.COLOR_BGR2GRAY)
elif(self.hist_type=='RGB'): model_frame = cv2.cvtColor(model_frame, cv2.COLOR_BGR2RGB)
hist = cv2.calcHist([model_frame], self.channels, None, self.hist_size, self.hist_range)
hist = cv2.normalize(hist, hist).flatten()
if name == '': name = str(len(self.model_list))
if name not in self.name_list:
self.model_list.append(hist)
self.name_list.append(name)
else:
for i in range(len(self.name_list)):
if self.name_list[i] == name:
self.model_list[i] = hist
break