本文整理汇总了Python中cv2.norm方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.norm方法的具体用法?Python cv2.norm怎么用?Python cv2.norm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.norm方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def main():
capture = cv2.VideoCapture(0)
_, image = capture.read()
previous = image.copy()
while (cv2.waitKey(1) < 0):
_, image = capture.read()
diff = cv2.absdiff(image, previous)
#image = cv2.flip(image, 3)
#image = cv2.norm(image)
_, diff = cv2.threshold(diff, 32, 0, cv2.THRESH_TOZERO)
_, diff = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY)
diff = cv2.medianBlur(diff, 5)
cv2.imshow('video', diff)
previous = image.copy()
capture.release()
cv2.destroyAllWindows()
示例2: __rotate_image_size_corrected
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def __rotate_image_size_corrected(image, angle):
# Calculate max size for the rotated template and image offset
image_size_height, image_size_width = image.shape
image_center_x = image_size_width // 2
image_center_y = image_size_height // 2
# Create rotation matrix
rotation_matrix = cv2.getRotationMatrix2D((image_center_x, image_center_y), -angle, 1)
# Apply offset
new_image_size = int(math.ceil(cv2.norm((image_size_height, image_size_width), normType=cv2.NORM_L2)))
rotation_matrix[0, 2] += (new_image_size - image_size_width) / 2
rotation_matrix[1, 2] += (new_image_size - image_size_height) / 2
# Apply rotation to the template
image_rotated = cv2.warpAffine(image, rotation_matrix, (new_image_size, new_image_size))
return image_rotated
示例3: del_duplicates
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def del_duplicates(pts):
"""Delete one of two potential facelet centers stored in pts if they are too close to each other."""
delta = width / 12 # width is defined global in grabcolors()
dele = True
while dele:
dele = False
r = range(len(pts))
for i in r:
for j in r[i + 1:]:
if np.linalg.norm(pts[i] - pts[j]) < delta:
del pts[j]
dele = True
if dele:
break
if dele:
break
示例4: facelets
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def facelets(pts, med):
"""Separate the candidates into edge and corner facelets by their distance from the medoid."""
ed = []
co = []
if med[0] == 0:
return co, ed # no edgefacelets detected
# find shortest distance
dmin = 10000
for p in pts:
d = np.linalg.norm(p - med)
if 1 < d < dmin:
dmin = d
# edgefacelets should be in a distance not more than dmin*1.3
for p in pts:
d = np.linalg.norm(p - med)
if dmin - 1 < d < dmin * 1.3:
ed.append(p)
# now find the corner facelets
for p in pts:
d = np.linalg.norm(p - med)
if dmin * 1.3 < d < dmin * 1.7:
co.append(p)
return co, ed
示例5: filter_matrix_corners_homography
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def filter_matrix_corners_homography(pts, max, matrix) -> (float, List):
'''
Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
Return a distance and a list of the transformed points
'''
# Transform the 4 corners thanks to the transformation matrix calculated
transformed_pts = cv2.perspectiveTransform(pts, matrix)
# Compute the difference between original and modified position of points
dist = round(cv2.norm(pts - transformed_pts, cv2.NORM_L2) / max, 10) # sqrt((X1-X2)²+(Y1-Y2)²+...)
# Totally an heuristic (geometry based):
if dist < 0.20:
return dist, transformed_pts
else:
return 1, transformed_pts
示例6: filter_matrix_corners_affine
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def filter_matrix_corners_affine(pts, max, matrix) -> (float, List):
'''
Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
Return a distance and a list of the transformed points
'''
# Make affine transformation
add_row = np.array([[0, 0, 1]])
affine_matrix = np.concatenate((matrix, add_row), axis=0)
transformed_pts_affine = cv2.perspectiveTransform(pts, affine_matrix)
# Affine distance
tmp_dist_affine = round(cv2.norm(pts - transformed_pts_affine, cv2.NORM_L2) / max, 10) # sqrt((X1-X2)²+(Y1-Y2)²+...)
# Totally an heuristic (geometry based):
if tmp_dist_affine < 0.20:
return tmp_dist_affine, transformed_pts_affine
else:
return 1, transformed_pts_affine
示例7: calculate_distance
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def calculate_distance(self, image, template, scale):
"""Calculate distance."""
piece_loc = self.find_piece(image, template, scale)
logger.debug('Piece location: %s', piece_loc)
if not piece_loc:
return None
board_center = self.find_board_center(image, piece_loc, scale)
logger.debug('Board center location: %s', board_center)
if not board_center:
return None
if self.results_path is not None:
cv.rectangle(image, piece_loc, piece_loc, (255, 0, 0), 1)
cv.rectangle(image, board_center, board_center, (255, 0, 0), 1)
filename = '{}.png'.format(int(time.time()))
cv.imwrite(os.path.join(self.results_path, filename), image)
return cv.norm(piece_loc, board_center)
示例8: is_picture
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def is_picture(self):
sampling_interval = int(math.floor(self.scene_length / 5))
sampling_frames = list(range(self.start_frame_no + sampling_interval,
self.end_frame_no - sampling_interval + 1, sampling_interval))
frames = []
for frame_no in sampling_frames:
self.video.set(cv2.CAP_PROP_POS_FRAMES, frame_no)
ret, frame = self.video.read()
frames.append(frame)
diff = 0
n_diff = 0
for frame, next_frame in zip(frames, frames[1:]):
diff += cv2.norm(frame, next_frame, cv2.NORM_L1) # abs diff
n_diff += 1
diff /= n_diff
self.debugging_info[4] = round(diff, 0)
return diff < 3000000
示例9: medoid
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def medoid(pts):
"""The mediod is the point with the smallest summed distance from the other points.
This is a candidate for the center facelet."""
res = np.array([0.0, 0.0])
smin = 100000
for i in pts:
s = 0
for j in pts:
s += np.linalg.norm(i - j)
if s < smin:
smin = s
res = i
return res
示例10: mirr_facelet
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def mirr_facelet(co, ed, med):
"""If we have detected a facelet position, the point reflection at the center also gives a facelet position.
We can use this position in case the other facelet was not detected directly."""
aef = []
acf = []
for p in ed:
pa = 2 * med - p
aef.append(pa)
for p in co:
pa = 2 * med - p
acf.append(pa)
# delete duplicates
delta = width / 12 # width is defined global in grabcolors()
for k in range(len(aef) - 1, -1, -1):
for p in ed:
if np.linalg.norm(aef[k] - p) < delta:
del aef[k]
break
for k in range(len(acf) - 1, -1, -1):
for p in co:
if np.linalg.norm(acf[k] - p) < delta:
del acf[k]
break
return acf, aef
示例11: compute_matrix_pictures_corners
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def compute_matrix_pictures_corners():
# Get the size of the current matching picture
# TODO : Store somewhere the shape of the uploaded picture ?
# h, w, d = pic1.image.shape
# TODO : For now, just take a random size picture
h, w, d = 1000, 1000, 3
# Get the position of the 4 corners of the current matching picture
pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
max = 4 * cv2.norm(np.float32([[w, h]]), cv2.NORM_L2)
return pts, max
示例12: _calc_reprojection_error
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def _calc_reprojection_error(self,figure_size=(8,8),save_dir=None):
"""
Util function to Plot reprojection error
"""
reprojection_error = []
for i in range(len(self.calibration_df)):
imgpoints2, _ = cv2.projectPoints(self.calibration_df.obj_points[i], self.calibration_df.rvecs[i], self.calibration_df.tvecs[i], self.camera_matrix, self.dist_coefs)
temp_error = cv2.norm(self.calibration_df.img_points[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
reprojection_error.append(temp_error)
self.calibration_df['reprojection_error'] = pd.Series(reprojection_error)
avg_error = np.sum(np.array(reprojection_error))/len(self.calibration_df.obj_points)
x = [os.path.basename(p) for p in self.calibration_df.image_names]
y_mean = [avg_error]*len(self.calibration_df.image_names)
fig,ax = plt.subplots()
fig.set_figwidth(figure_size[0])
fig.set_figheight(figure_size[1])
# Plot the data
ax.scatter(x,reprojection_error,label='Reprojection error', marker='o') #plot before
# Plot the average line
ax.plot(x,y_mean, label='Mean Reprojection error', linestyle='--')
# Make a legend
ax.legend(loc='upper right')
for tick in ax.get_xticklabels():
tick.set_rotation(90)
# name x and y axis
ax.set_title("Reprojection_error plot")
ax.set_xlabel("Image_names")
ax.set_ylabel("Reprojection error in pixels")
if save_dir:
plt.savefig(os.path.join(save_dir,"reprojection_error.png"))
plt.show()
print("The Mean Reprojection Error in pixels is: {}".format(avg_error))
示例13: init
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def init(self,first_frame,bbox):
bbox=np.array(bbox).astype(np.int64)
x,y,w,h=tuple(bbox)
self._scale_factor=min(1,round(10*self.config.img_scale_target_diagonal/cv2.norm(np.array([w,h])))/10.)
self._center=(self._scale_factor*(x+(w-1)/2),self._scale_factor*(y+(h-1)/2))
self.w,self.h=int(w*self._scale_factor),int(h*self._scale_factor)
self._target_sz=(self.w,self.h)
img=cv2.resize(first_frame,None,fx=self._scale_factor,fy=self._scale_factor)
if self.config.color_space=='lab':
img=cv2.cvtColor(img,cv2.COLOR_BGR2Lab)
elif self.config.color_space=='hsv':
img=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
img[:, :, 0] = (img[:, :, 0] * 256 / 180)
img = img.astype(np.uint8)
else:
pass
surr_sz=(int(np.floor(self.config.surr_win_factor*self.w)),int(np.floor(self.config.surr_win_factor*self.h)))
surr_rect=pos2rect(self._center,surr_sz,(img.shape[1],img.shape[0]))
obj_rect_surr=pos2rect(self._center,self._target_sz,(img.shape[1],img.shape[0]))
obj_rect_surr=(obj_rect_surr[0]-surr_rect[0],
obj_rect_surr[1]-surr_rect[1],
obj_rect_surr[2],obj_rect_surr[3])
surr_win=get_sub_window(img,self._center,surr_sz)
self.bin_mapping=get_bin_mapping(self.config.num_bins)
self.prob_lut_,prob_map=get_foreground_background_probs(surr_win,obj_rect_surr,
self.config.num_bins,self.bin_mapping)
self._prob_lut_distractor=copy.deepcopy(self.prob_lut_)
self._prob_lut_masked=copy.deepcopy(self.prob_lut_)
self.adaptive_threshold_=get_adaptive_threshold(prob_map,obj_rect_surr)
self.target_pos_history.append((self._center[0]/self._scale_factor,self._center[1]/self._scale_factor))
self.target_sz_history.append((self._target_sz[0]/self._scale_factor,self._target_sz[1]/self._scale_factor))
示例14: normalize_result
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import norm [as 别名]
def normalize_result(webcam, idcard):
diff_correy = cv2.norm(settings.COREY_MATRIX, idcard, cv2.NORM_L2)
diff_wilde = cv2.norm(settings.WILDE_MATRIX, idcard, cv2.NORM_L2)
diff_min = diff_correy if diff_correy < diff_wilde else diff_wilde
diff = cv2.norm(webcam, idcard, cv2.NORM_L2)
score = float(diff) / float(diff_min)
percentage = (1.28 - score * score * score) * 10000 / 128
return {
'percentage': percentage,
'score': score,
'message': utils.matching_message(score)
}