本文整理汇总了Python中cv2.meanStdDev方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.meanStdDev方法的具体用法?Python cv2.meanStdDev怎么用?Python cv2.meanStdDev使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.meanStdDev方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def main():
jpg_inputs = find_inputs(JPGPATH, types=('.jpg',), prefix=PREFIX)
tif_inputs = find_inputs(TIFPATH, types=('.tif',), prefix=PREFIX)
jpg_stats = []
for f in jpg_inputs:
img = cv2.imread(f[1])
mean, std = cv2.meanStdDev(img)
jpg_stats.append(np.array([mean[::-1] / 255, std[::-1] / 255]))
jpg_vals = np.mean(jpg_stats, axis=0)
print(jpg_vals)
tif_stats = []
for f in tif_inputs:
img = cv2.imread(f[1], -1)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)
mean, std = cv2.meanStdDev(img)
tif_stats.append(np.array([mean, std]))
tif_vals = np.mean(tif_stats, axis=0)
print(tif_vals)
示例2: cal_mean_std
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def cal_mean_std(images_dir):
"""
给定数据图片根目录,计算图片整体均值与方差
:param images_dir:
:return:
"""
img_filenames = os.listdir(images_dir)
m_list, s_list = [], []
for img_filename in tqdm(img_filenames):
img = cv2.imread(images_dir + '/' + img_filename)
img = img / 255.0
m, s = cv2.meanStdDev(img)
m_list.append(m.reshape((3,)))
s_list.append(s.reshape((3,)))
print(m_list)
m_array = np.array(m_list)
s_array = np.array(s_list)
m = m_array.mean(axis=0, keepdims=True)
s = s_array.mean(axis=0, keepdims=True)
print('mean: ',m[0][::-1])
print('std: ',s[0][::-1])
return m
示例3: compute_mean_std
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def compute_mean_std(dataset):
"""
https://stats.stackexchange.com/questions/25848/how-to-sum-a-standard-deviation
"""
one_over_255 = float(1. / 255.)
global_mean = np.zeros(3, dtype=np.float64)
global_var = np.zeros(3, dtype=np.float64)
n_items = len(dataset)
for image_fname in dataset:
x = read_rgb(image_fname) * one_over_255
mean, stddev = cv2.meanStdDev(x)
global_mean += np.squeeze(mean)
global_var += np.squeeze(stddev) ** 2
return global_mean / n_items, np.sqrt(global_var)
示例4: worker
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def worker(path, select_folder, waste_img_folder, crop_sz, stride, thres_sz, cont_var_thresh, freq_var_thresh):
img_name = os.path.basename(path)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
h, w, c = img.shape
h_space = np.arange(0, h - crop_sz + 1, stride)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, stride)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
index = 0
for x in h_space:
for y in w_space:
index += 1
patch_name = img_name.replace('.png', '_s{:05d}.png'.format(index))
patch = img[x:x + crop_sz, y:y + crop_sz, :]
im_gray = patch[:, :, 1]
[mean, var] = cv2.meanStdDev(im_gray)
freq_var = cv2.Laplacian(im_gray, cv2.CV_8U).var()
if var > cont_var_thresh and freq_var>freq_var_thresh:
cv2.imwrite(os.path.join(select_folder, patch_name), patch)
else:
cv2.imwrite(os.path.join(waste_img_folder, patch_name), patch)
return 'Processing {:s} ...'.format(img_name)
示例5: get_mean_std
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def get_mean_std(self, I):
"""
Get mean and standard deviation of each channel.
:param I: Image RGB uint8.
:return:
"""
assert is_uint8_image(I), "Should be a RGB uint8 image"
I1, I2, I3 = self.lab_split(I)
m1, sd1 = cv.meanStdDev(I1)
m2, sd2 = cv.meanStdDev(I2)
m3, sd3 = cv.meanStdDev(I3)
means = m1, m2, m3
stds = sd1, sd2, sd3
return means, stds
示例6: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def __call__(self, img):
# This should still be a H x W x C Numpy/OpenCv compat image, not a Torch Tensor
assert isinstance(img, np.ndarray)
mean, std = cv2.meanStdDev(img)
mean, std = mean.astype(np.float32), std.astype(np.float32)
img = img.astype(np.float32)
img = (img - np.squeeze(mean)) / (np.squeeze(std) + self.std_epsilon)
return img
示例7: preprocess
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def preprocess(img, imgSize, dataAugmentation=False):
"put img into target img of size imgSize, transpose for TF and normalize gray-values"
# there are damaged files in IAM dataset - just use black image instead
if img is None:
img = np.zeros([imgSize[1], imgSize[0]])
# increase dataset size by applying random stretches to the images
if dataAugmentation:
stretch = (random.random() - 0.5) # -0.5 .. +0.5
wStretched = max(int(img.shape[1] * (1 + stretch)), 1) # random width, but at least 1
img = cv2.resize(img, (wStretched, img.shape[0])) # stretch horizontally by factor 0.5 .. 1.5
# create target image and copy sample image into it
(wt, ht) = imgSize
(h, w) = img.shape
fx = w / wt
fy = h / ht
f = max(fx, fy)
newSize = (max(min(wt, int(w / f)), 1), max(min(ht, int(h / f)), 1)) # scale according to f (result at least 1 and at most wt or ht)
img = cv2.resize(img, newSize)
target = np.ones([ht, wt]) * 255
target[0:newSize[1], 0:newSize[0]] = img
# transpose for TF
img = cv2.transpose(target)
# normalize
(m, s) = cv2.meanStdDev(img)
m = m[0][0]
s = s[0][0]
img = img - m
img = img / s if s>0 else img
return img
示例8: fourier_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def fourier_transform(ch_bd):
dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# get the Power Spectrum
magnitude_spectrum = 20. * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
psd1D = azimuthal_avg(magnitude_spectrum)
return list(cv2.meanStdDev(psd1D))
示例9: normalize_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def normalize_image(img):
# normalize
(m, s) = cv2.meanStdDev(img)
m = m[0][0]
s = s[0][0]
img = img - m
img = img / s if s>0 else img
return img
示例10: _update
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def _update(self):
"""Updates an image in the already drawn window."""
viz = self.img.copy()
contours = _find_exterior_contours(self.mask)
viz = cv.drawContours(viz, contours, -1, color=(255,) * 3, thickness=-1)
viz = cv.addWeighted(self.img, 0.75, viz, 0.25, 0)
viz = cv.drawContours(viz, contours, -1, color=(255,) * 3, thickness=1)
self.mean, self.stddev = cv.meanStdDev(self.img, mask=self.mask)
meanstr = "mean=({:.2f}, {:.2f}, {:.2f})".format(*self.mean[:, 0])
stdstr = "std=({:.2f}, {:.2f}, {:.2f})".format(*self.stddev[:, 0])
cv.imshow(self.name, viz)
cv.displayStatusBar(self.name, ", ".join((meanstr, stdstr)))
示例11: get_image_stats
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def get_image_stats(img, left=0, top=0, width=0, height=0):
crop_img = img[top:(top + height), left:(left + width)]
(means, stds) = cv2.meanStdDev(crop_img)
stats = np.concatenate([means, stds]).flatten()
return stats
示例12: worker
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def worker(path, select_folder, waste_folder, img_folder, waste_img_folder, crop_sz, stride, thres_sz, cont_var_thresh, freq_var_thresh):
img_name = os.path.basename(path)
img = loadmat(path)
img = np.asarray(img['ps4k'])
n_channels = len(img.shape)
if n_channels == 2:
h, w = img.shape
elif n_channels == 3:
h, w, c = img.shape
else:
raise ValueError('Wrong image shape - {}'.format(n_channels))
h_space = np.arange(0, h - crop_sz + 1, stride)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, stride)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
index = 0
for x in h_space:
for y in w_space:
index += 1
patch_name = img_name.replace('.mat', '_s{:05d}.mat'.format(index))
img_patch_name = img_name.replace('.mat', '_s{:05d}.tiff'.format(index))
if n_channels == 2:
patch = img[x:x + crop_sz, y:y + crop_sz]
else:
patch = img[x:x + crop_sz, y:y + crop_sz, :]
# im_gray = cv2.cvtColor(patch, cv2.COLOR_RGB2GRAY)
im_gray = patch[:, :, 1]
[mean, var] = cv2.meanStdDev(im_gray)
var = var/mean
freq_var = cv2.Laplacian(im_gray, cv2.CV_16U).mean()
if var > cont_var_thresh and freq_var>freq_var_thresh:
savemat(os.path.join(select_folder, patch_name), {'ps': patch})
img_patch = np.delete(patch, 2, 2).astype(float)/(2.**16)
img_patch = img_patch ** (1/2.2) *255.
img_patch = np.clip(img_patch, 0, 255)
cv2.imwrite(os.path.join(img_folder, img_patch_name), np.uint8(img_patch))
# print('saving: %s' % os.path.join(select_folder, patch_name))
else:
savemat(os.path.join(waste_folder, patch_name), {'ps': patch})
# img_patch = np.delete(patch, 2, 2)
img_patch = np.delete(patch, 2, 2).astype(float)/(2.**16)
img_patch = img_patch ** (1/2.2) * 255.
img_patch = np.uint8(np.clip(img_patch, 0, 255))
cv2.imwrite(os.path.join(waste_img_folder, img_patch_name), np.uint8(img_patch))
# print('saving: %s' % os.path.join(select_folder, patch_name))
return 'Processing {:s} ...'.format(img_name)
示例13: transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def transform(self, df: pd.DataFrame) -> np.ndarray:
try:
self.aap
except:
raise NotFittedError(
"This ImagePreprocessor instance is not fitted yet. "
"Call 'fit' with appropriate arguments before using this estimator."
)
image_list = df[self.img_col].tolist()
if self.verbose:
print("Reading Images from {}".format(self.img_path))
imgs = [cv2.imread("/".join([self.img_path, img])) for img in image_list]
# finding images with different height and width
aspect = [(im.shape[0], im.shape[1]) for im in imgs]
aspect_r = [a[0] / a[1] for a in aspect]
diff_idx = [i for i, r in enumerate(aspect_r) if r != 1.0]
if self.verbose:
print("Resizing")
resized_imgs = []
for i, img in tqdm(enumerate(imgs), total=len(imgs), disable=self.verbose != 1):
if i in diff_idx:
resized_imgs.append(self.aap.preprocess(img))
else:
resized_imgs.append(self.spp.preprocess(img))
if self.verbose:
print("Computing normalisation metrics")
mean_R, mean_G, mean_B = [], [], []
std_R, std_G, std_B = [], [], []
for rsz_img in resized_imgs:
(mean_b, mean_g, mean_r), (std_b, std_g, std_r) = cv2.meanStdDev(rsz_img)
mean_R.append(mean_r)
mean_G.append(mean_g)
mean_B.append(mean_b)
std_R.append(std_r)
std_G.append(std_g)
std_B.append(std_b)
self.normalise_metrics = dict(
mean={
"R": np.mean(mean_R) / 255.0,
"G": np.mean(mean_G) / 255.0,
"B": np.mean(mean_B) / 255.0,
},
std={
"R": np.mean(std_R) / 255.0,
"G": np.mean(std_G) / 255.0,
"B": np.mean(std_B) / 255.0,
},
)
return np.asarray(resized_imgs)
示例14: _getBlobFeatures
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def _getBlobFeatures(blob_cnt, blob_mask, roi_image, roi_corner):
if blob_cnt.size > 0:
area = float(cv2.contourArea(blob_cnt))
# find use the best rotated bounding box, the fitEllipse function produces bad results quite often
# this method is better to obtain an estimate of the worm length than
# eccentricity
(CMx, CMy), (L, W), angle = cv2.minAreaRect(blob_cnt)
#adjust CM from the ROI reference frame to the image reference
CMx += roi_corner[0]
CMy += roi_corner[1]
if L == 0 or W == 0:
return None #something went wrong abort
if W > L:
L, W = W, L # switch if width is larger than length
quirkiness = np.sqrt(1 - W**2 / L**2)
hull = cv2.convexHull(blob_cnt) # for the solidity
solidity = area / cv2.contourArea(hull)
perimeter = float(cv2.arcLength(blob_cnt, True))
compactness = 4 * np.pi * area / (perimeter**2)
# calculate the mean intensity of the worm
intensity_mean, intensity_std = cv2.meanStdDev(roi_image, mask=blob_mask)
intensity_mean = intensity_mean[0,0]
intensity_std = intensity_std[0,0]
# calculate hu moments, they are scale and rotation invariant
hu_moments = cv2.HuMoments(cv2.moments(blob_cnt))
# save everything into the the proper output format
mask_feats = (CMx,
CMy,
area,
perimeter,
L,
W,
quirkiness,
compactness,
angle,
solidity,
intensity_mean,
intensity_std,
*hu_moments.flatten())
else:
return tuple([np.nan]*19)
return mask_feats
示例15: feature_fourier
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import meanStdDev [as 别名]
def feature_fourier(chBd, blk, scs, end_scale):
rows, cols = chBd.shape
scales_half = int(end_scale / 2.0)
scales_blk = end_scale - blk
out_len = 0
pix_ctr = 0
for i in range(0, rows-scales_blk, blk):
for j in range(0, cols-scales_blk, blk):
for k in scs:
out_len += 2
# set the output list
out_list = np.zeros(out_len, dtype='float32')
for i in range(0, rows-scales_blk, blk):
for j in range(0, cols-scales_blk, blk):
for k in scs:
k_half = int(k / 2.0)
ch_bd = chBd[i+scales_half-k_half:i+scales_half-k_half+k,
j+scales_half-k_half:j+scales_half-k_half+k]
# get the Fourier Transform
dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# get the Power Spectrum
magnitude_spectrum = 20.0 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
psd1D = azimuthal_avg(magnitude_spectrum)
sts = list(cv2.meanStdDev(psd1D))
# plt.subplot(121)
# plt.imshow(ch_bd, cmap='gray')
# plt.subplot(122)
# plt.imshow(magnitude_spectrum, interpolation='nearest')
# plt.show()
# print psd1D
# sys.exit()
for st in sts:
if np.isnan(st[0][0]):
out_list[pix_ctr] = 0.0
else:
out_list[pix_ctr] = st[0][0]
pix_ctr += 1
out_list[np.isnan(out_list) | np.isinf(out_list)] = 0.0
return out_list