当前位置: 首页>>代码示例>>Python>>正文


Python cv2.magnitude方法代码示例

本文整理汇总了Python中cv2.magnitude方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.magnitude方法的具体用法?Python cv2.magnitude怎么用?Python cv2.magnitude使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv2的用法示例。


在下文中一共展示了cv2.magnitude方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_mag_avg

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def get_mag_avg(img):

    img = np.sqrt(img)

    kernels = get_kernels()

    mag = np.zeros(img.shape, dtype='float32')

    for kernel_filter in kernels:

        gx = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_REFLECT)
        gy = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_REFLECT)

        mag += cv2.magnitude(gx, gy)

    mag /= len(kernels)

    return np.uint8(mag) 
开发者ID:jgrss,项目名称:spfeas,代码行数:20,代码来源:spfunctions.py

示例2: get_mag_ang

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def get_mag_ang(img):

    """
    Gets image gradient (magnitude) and orientation (angle)

    Args:
        img

    Returns:
        Gradient, orientation
    """

    img = np.sqrt(img)

    gx = cv2.Sobel(np.float32(img), cv2.CV_32F, 1, 0)
    gy = cv2.Sobel(np.float32(img), cv2.CV_32F, 0, 1)

    mag, ang = cv2.cartToPolar(gx, gy)

    return mag, ang, gx, gy 
开发者ID:jgrss,项目名称:spfeas,代码行数:22,代码来源:spfunctions.py

示例3: grad_mag

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def grad_mag(ch_bd):

    # normalize
    mu_ = ch_bd.mean()
    std_ = ch_bd.std()
    ch_bd = np.divide(np.subtract(ch_bd, mu_), std_)

    ch_bd[np.isnan(ch_bd)] = 0
    ch_bd += abs(ch_bd.min())

    # compute gradient orientation and magnitude
    return get_mag_ang(ch_bd) 
开发者ID:jgrss,项目名称:spfeas,代码行数:14,代码来源:spfunctions.py

示例4: fourier_transform

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def fourier_transform(ch_bd):

    dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
    dft_shift = np.fft.fftshift(dft)

    # get the Power Spectrum
    magnitude_spectrum = 20. * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

    psd1D = azimuthal_avg(magnitude_spectrum)

    return list(cv2.meanStdDev(psd1D)) 
开发者ID:jgrss,项目名称:spfeas,代码行数:13,代码来源:spfunctions.py

示例5: main

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def main():
    # read an image 
    img = cv2.imread('../figures/flower.png')
    
    # create cropped grayscale image from the original image
    crop_gray = cv2.cvtColor(img[100:400, 100:400], cv2.COLOR_BGR2GRAY)
    
    # take discrete fourier transform 
    dft = cv2.dft(np.float32(crop_gray),flags = cv2.DFT_COMPLEX_OUTPUT)
    dft_shift = np.fft.fftshift(dft)
    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
    
    # plot results
    plot_dft(crop_gray, magnitude_spectrum) 
开发者ID:PacktPublishing,项目名称:Practical-Computer-Vision,代码行数:16,代码来源:03_fourier_transform.py

示例6: filter

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def filter(self, image):
        """
        Filter the given image with the Gabor kernels in this bank.

        Parameters
        ----------
        image: numpy.array
            Image to be filtered.

        Returns
        -------
        responses: numpy.array
            List of the responses of the filtering with the Gabor kernels. The
            responses are the magnitude of both the real and imaginary parts of
            the convolution with each kernel, hence this list dimensions are the
            same of the image, plus another dimension for the 32 responses (one
            for each kernel in the bank, since there are 4 wavelengths and 8
            orientations).
        """

        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        responses = []
        for wavelength in self._wavelengths:
            for orientation in self._orientations:

                # Get the kernel
                frequency = 1 / wavelength
                par = KernelParams(wavelength, orientation)
                kernel = self._kernels[par]

                # Filter with both real and imaginary parts
                real = cv2.filter2D(image, cv2.CV_32F, kernel.real)
                imag = cv2.filter2D(image, cv2.CV_32F, kernel.imag)

                # The response is the magnitude of the real and imaginary
                # responses to the filters, normalized to [-1, 1]
                mag = cv2.magnitude(real, imag)
                cv2.normalize(mag, mag, -1, 1, cv2.NORM_MINMAX)

                responses.append(mag)

        return np.array(responses) 
开发者ID:luigivieira,项目名称:emotions,代码行数:45,代码来源:gabor.py

示例7: feature_fourier

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import magnitude [as 别名]
def feature_fourier(chBd, blk, scs, end_scale):

    rows, cols = chBd.shape
    scales_half = int(end_scale / 2.0)
    scales_blk = end_scale - blk
    out_len = 0
    pix_ctr = 0

    for i in range(0, rows-scales_blk, blk):
        for j in range(0, cols-scales_blk, blk):
            for k in scs:
                out_len += 2

    # set the output list
    out_list = np.zeros(out_len, dtype='float32')

    for i in range(0, rows-scales_blk, blk):

        for j in range(0, cols-scales_blk, blk):

            for k in scs:

                k_half = int(k / 2.0)

                ch_bd = chBd[i+scales_half-k_half:i+scales_half-k_half+k,
                             j+scales_half-k_half:j+scales_half-k_half+k]

                # get the Fourier Transform
                dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
                dft_shift = np.fft.fftshift(dft)

                # get the Power Spectrum
                magnitude_spectrum = 20.0 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

                psd1D = azimuthal_avg(magnitude_spectrum)

                sts = list(cv2.meanStdDev(psd1D))

                # plt.subplot(121)
                # plt.imshow(ch_bd, cmap='gray')
                # plt.subplot(122)
                # plt.imshow(magnitude_spectrum, interpolation='nearest')
                # plt.show()
                # print psd1D
                # sys.exit()

                for st in sts:

                    if np.isnan(st[0][0]):
                        out_list[pix_ctr] = 0.0
                    else:
                        out_list[pix_ctr] = st[0][0]

                    pix_ctr += 1

    out_list[np.isnan(out_list) | np.isinf(out_list)] = 0.0

    return out_list 
开发者ID:jgrss,项目名称:spfeas,代码行数:60,代码来源:spfunctions.py


注:本文中的cv2.magnitude方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。