本文整理汇总了Python中cv2.isContourConvex方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.isContourConvex方法的具体用法?Python cv2.isContourConvex怎么用?Python cv2.isContourConvex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.isContourConvex方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: find_squares
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
示例2: find_boxes
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def find_boxes(tiff_fl, blur=False):
im = Image.open(tiff_fl).convert('L')
a = np.asarray(im)
if blur:
a = cv.GaussianBlur(a, (5, 5), 0)
contours, hierarchy = cv.findContours(a.copy(), mode=cv.RETR_TREE, method=cv.CHAIN_APPROX_SIMPLE)
border_boxes = []
# n = np.ones_like(a)
for j,cnt in enumerate(contours):
cnt_len = cv.arcLength(cnt, True)
orig_cnt = cnt.copy()
cnt = cv.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and ((a.shape[0]-3) * (a.shape[1] -3)) > cv.contourArea(cnt) > 1000 and cv.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
b = cv.boundingRect(orig_cnt)
x,y,w,h = b
border_boxes.append(b)
# cv.rectangle(n, (x,y), (x+w, y+h), 0)
# cv.drawContours(n, [cnt], -1,0, thickness = 5)
# Image.fromarray(n*255).show()
return border_boxes
示例3: _find_document_corners
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def _find_document_corners(resized_img):
contours = _compute_all_contours(resized_img)
resized_height, resized_width = _get_img_dimensions(resized_img)
full_resized_image_area = resized_height * resized_width
# Default to the smallest possible document area and save any larger document areas
largest_document_area = full_resized_image_area * ALIGNMENT_PERCENT_AREA_DOCUMENT_MUST_COVER
# Default to largest: no modification to the image if no document is found
largest_document_corners = _get_corner_array(resized_height, resized_width)
for contour in contours:
contour_perimeter = cv2.arcLength(contour, True)
approximate_polygonal_contour = cv2.approxPolyDP(contour, 0.03 * contour_perimeter, True)
# All pages have 4 corners and are convex
if (len(approximate_polygonal_contour) == 4 and
cv2.isContourConvex(approximate_polygonal_contour) and
cv2.contourArea(approximate_polygonal_contour) > largest_document_area):
largest_document_area = cv2.contourArea(approximate_polygonal_contour)
largest_document_corners = approximate_polygonal_contour
return largest_document_corners
示例4: get_output_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def get_output_image(path):
img = cv2.imread(path,2)
img_org = cv2.imread(path)
ret,thresh = cv2.threshold(img,127,255,0)
im2,contours,hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
for j,cnt in enumerate(contours):
epsilon = 0.01*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
hull = cv2.convexHull(cnt)
k = cv2.isContourConvex(cnt)
x,y,w,h = cv2.boundingRect(cnt)
if(hierarchy[0][j][3]!=-1 and w>10 and h>10):
#putting boundary on each digit
cv2.rectangle(img_org,(x,y),(x+w,y+h),(0,255,0),2)
#cropping each image and process
roi = img[y:y+h, x:x+w]
roi = cv2.bitwise_not(roi)
roi = image_refiner(roi)
th,fnl = cv2.threshold(roi,127,255,cv2.THRESH_BINARY)
# getting prediction of cropped image
pred = predict_digit(roi)
print(pred)
# placing label on each digit
(x,y),radius = cv2.minEnclosingCircle(cnt)
img_org = put_label(img_org,pred,x,y)
return img_org
示例5: on_new_image_listener
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def on_new_image_listener(self, emitter):
try:
self.image_source = emitter
if emitter.img is None:
return
_retrieval_mode = self.contour_retrieval_mode[self.retrieval_mode] if type(self.retrieval_mode) == str else self.retrieval_mode
_approximation_method = self.contour_approximation_method[self.approximation_method] if type(self.approximation_method) == str else self.approximation_method
major = cv2.__version__.split('.')[0]
img = emitter.img.copy()
if major == '3':
img, self.contours, self.hierarchy = cv2.findContours(img, _retrieval_mode, _approximation_method)
else:
self.contours, self.hierarchy = cv2.findContours(img, _retrieval_mode, _approximation_method)
filtered_contours_indices = []
for ic in range(0, len(self.contours)):
c = self.contours[ic]
if not (self.__discard_convex and cv2.isContourConvex(c)):
if not (self.__discard_non_convex and not cv2.isContourConvex(c)):
l = cv2.arcLength(c, True)
if l>self.__min_arc_length and l<self.__max_arc_length:
area = cv2.contourArea(c)
if area>self.__min_contour_area and area<self.__max_contour_area:
#https://answers.opencv.org/question/21101/circularity-of-a-connected-component/
roundness = (4.0*area) / (math.pi* (l/math.pi)**2) #4 Area / (pi Max-diam^2)
if roundness>self.__min_roundness and roundness<self.__max_roundness:
filtered_contours_indices.append(ic)
#drawing selected contours
img.fill(255)
for i in filtered_contours_indices:
img = cv2.drawContours(img, self.contours, i, 0, 1, cv2.LINE_AA)
self.set_image_data(img)
self.on_new_contours_result()
except Exception:
print(traceback.format_exc())
示例6: find_squares
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
示例7: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5,5))
edge = cv2.Canny(blur, 30, 100)
edge = cv2.blur(edge, (2,2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 255, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0,255,0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5 , True) for ctr in contours]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0,255,0), 3)
return frame
示例8: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5, 5))
edge = cv2.Canny(blur, 10, 100)
edge = cv2.blur(edge, (2, 2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 120, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0, 255, 0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5, True) for ctr in contours]
contours = [ctr for ctr in contours if len(ctr) == 4]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0, 255, 0), 3)
return frame
示例9: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5, 5))
edge = cv2.Canny(blur, 10, 100)
edge = cv2.blur(edge, (2, 2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 120, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0, 255, 0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 20]
contours = [cv2.approxPolyDP(ctr, 5, True) for ctr in contours]
contours = [ctr for ctr in contours if len(ctr) > 10]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0, 255, 0), 3)
return frame
示例10: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5, 5))
edge = cv2.Canny(blur, 10, 100)
edge = cv2.blur(edge, (2, 2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 120, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0, 255, 0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5, True) for ctr in contours]
contours = [ctr for ctr in contours if len(ctr) == 3]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0, 255, 0), 3)
return frame
示例11: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5, 5))
edge = cv2.Canny(blur, 10, 100)
edge = cv2.blur(edge, (2, 2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 120, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0, 255, 0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5, True) for ctr in contours]
contours = [ctr for ctr in contours if len(ctr) == 4]
edges = [LA.norm(a - b) for a, b in zip(simp_ctr, np.roll(simp_ctr, 2))]
ratios = [(1 - e / edges[0]) ** 2 for e in edges]
print(contours)
# squares = [square for square in contours if find_square(contours)]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0, 255, 0), 3)
return frame
示例12: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
blur = cv2.blur(gray, (5,5))
edge = cv2.Canny(blur, 30, 100)
edge = cv2.blur(edge, (2,2))
cv2.imshow('blured edge', edge)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(edge, 60, 255, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0,255,0), 3)
cv2.imshow('cpframe', cpframe)
# ================== TODO ===================
# Modify these code to suit your need
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5 , True) for ctr in contours]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
#contours = [ctr for ctr in contours if len(ctr) == 3]
#contours = [ctr for ctr in contours if len(ctr) == 4]
contours = [ctr for ctr in contours if is_circle(ctr)]
# ============================================
# draw on the frame
cv2.drawContours(frame, contours, -1, (0,255,0), 3)
return frame
示例13: imgproc
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def imgproc(frame):
# convert color to gray scale and show it
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
# convert image to black and white and show it
thresh1, thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)
cv2.imshow('thresh', thresh)
# find contours!
contours, hry = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# draw all the contours
cpframe = frame.copy()
cv2.drawContours(cpframe, contours, -1, (0,255,0), 3)
cv2.imshow('cpframe', cpframe)
# do various tests and modification
contours = [ctr for ctr in contours if cv2.contourArea(ctr) > 100]
contours = [cv2.approxPolyDP(ctr, 5 , True) for ctr in contours]
contours = [ctr for ctr in contours if cv2.isContourConvex(ctr)]
# draw on the frame
cv2.drawContours(frame, contours, -1, (0,255,0), 3)
return frame
示例14: detect_markers
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def detect_markers(img):
width, height, _ = img.shape
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 10, 100)
contours, hierarchy = cv2.findContours(edges.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:]
# We only keep the long enough contours
min_contour_length = min(width, height) / 50
contours = [contour for contour in contours if len(contour) > min_contour_length]
warped_size = 49
canonical_marker_coords = array(((0, 0),
(warped_size - 1, 0),
(warped_size - 1, warped_size - 1),
(0, warped_size - 1)),
dtype='float32')
markers_list = []
for contour in contours:
approx_curve = cv2.approxPolyDP(contour, len(contour) * 0.01, True)
if not (len(approx_curve) == 4 and cv2.isContourConvex(approx_curve)):
continue
sorted_curve = array(cv2.convexHull(approx_curve, clockwise=False),
dtype='float32')
persp_transf = cv2.getPerspectiveTransform(sorted_curve, canonical_marker_coords)
warped_img = cv2.warpPerspective(img, persp_transf, (warped_size, warped_size))
warped_gray = cv2.cvtColor(warped_img, cv2.COLOR_BGR2GRAY)
_, warped_bin = cv2.threshold(warped_gray, 127, 255, cv2.THRESH_BINARY)
marker = warped_bin.reshape(
[MARKER_SIZE, warped_size / MARKER_SIZE, MARKER_SIZE, warped_size / MARKER_SIZE]
)
marker = marker.mean(axis=3).mean(axis=1)
marker[marker < 127] = 0
marker[marker >= 127] = 1
try:
marker = validate_and_turn(marker)
hamming_code = extract_hamming_code(marker)
marker_id = int(decode(hamming_code), 2)
markers_list.append(HammingMarker(id=marker_id, contours=approx_curve))
except ValueError:
continue
return markers_list
示例15: getPageFromImage
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import isContourConvex [as 别名]
def getPageFromImage(img):
imgSize = np.shape(img)
gImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# bImg = cv2.medianBlur(src = gImg, ksize = 11)
bImg = gImg.copy()
threshold, _ = cv2.threshold(src = bImg, thresh = 0, maxval = 255, type = cv2.THRESH_BINARY | cv2.THRESH_OTSU)
cannyImg = cv2.Canny(image = bImg, threshold1 = 0.5 * threshold, threshold2 = threshold)
_, contours, _ = cv2.findContours(image = cannyImg.copy(), mode = cv2.RETR_TREE, method = cv2.CHAIN_APPROX_SIMPLE)
maxRect = Rect(0, 0, 0, 0)
coordinates = []
bestContour = 0
index = 0
for contour in contours:
epsilon = cv2.arcLength(contour, True)
corners = cv2.approxPolyDP(contour, 0.1 * epsilon, True)
x, y, w, h = cv2.boundingRect(points = contour)
currentArea = w * h
if len(corners) == 4 and currentArea > maxRect.getArea():
maxRect.set(x, y, w, h)
bestContour = index
index += 1
contoursInPage = 0
for contour in contours:
x, y, _, _ = cv2.boundingRect(points = contour)
if (x > maxRect.x and x < maxRect.x + maxRect.w) and (y > maxRect.y and y < maxRect.y + maxRect.h):
contoursInPage += 1
maxContours = 5
if contoursInPage <= maxContours:
print 'No Page Found'
print bestContour
print len(contours)
print cv2.isContourConvex(contours[bestContour])
cv2.drawContours(img, contours, bestContour, (0, 0, 255))
cv2.imshow('Page', img)
cv2.waitKey(0)