当前位置: 首页>>代码示例>>Python>>正文


Python cv2.initUndistortRectifyMap方法代码示例

本文整理汇总了Python中cv2.initUndistortRectifyMap方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.initUndistortRectifyMap方法的具体用法?Python cv2.initUndistortRectifyMap怎么用?Python cv2.initUndistortRectifyMap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv2的用法示例。


在下文中一共展示了cv2.initUndistortRectifyMap方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compute_stereo_rectification_maps

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def compute_stereo_rectification_maps(stereo_rig, im_size, size_factor):
    new_size = (int(im_size[1] * size_factor), int(im_size[0] * size_factor))
    rotation1, rotation2, pose1, pose2 = \
        cv2.stereoRectify(cameraMatrix1=stereo_rig.cameras[0].intrinsics.intrinsic_mat,
                          distCoeffs1=stereo_rig.cameras[0].intrinsics.distortion_coeffs,
                          cameraMatrix2=stereo_rig.cameras[1].intrinsics.intrinsic_mat,
                          distCoeffs2=stereo_rig.cameras[1].intrinsics.distortion_coeffs,
                          imageSize=(im_size[1], im_size[0]),
                          R=stereo_rig.cameras[1].extrinsics.rotation,
                          T=stereo_rig.cameras[1].extrinsics.translation,
                          flags=cv2.CALIB_ZERO_DISPARITY,
                          newImageSize=new_size
                          )[0:4]
    map1x, map1y = cv2.initUndistortRectifyMap(stereo_rig.cameras[0].intrinsics.intrinsic_mat,
                                               stereo_rig.cameras[0].intrinsics.distortion_coeffs,
                                               rotation1, pose1, new_size, cv2.CV_32FC1)
    map2x, map2y = cv2.initUndistortRectifyMap(stereo_rig.cameras[1].intrinsics.intrinsic_mat,
                                               stereo_rig.cameras[1].intrinsics.distortion_coeffs,
                                               rotation2, pose2, new_size, cv2.CV_32FC1)
    return map1x, map1y, map2x, map2y 
开发者ID:Algomorph,项目名称:cvcalib,代码行数:22,代码来源:utils.py

示例2: optical_distortion

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def optical_distortion(
    img, k=0, dx=0, dy=0, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None
):
    """Barrel / pincushion distortion. Unconventional augment.

    Reference:
        |  https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
        |  https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
        |  https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
        |  http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/
    """
    height, width = img.shape[:2]

    fx = width
    fy = height

    cx = width * 0.5 + dx
    cy = height * 0.5 + dy

    camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)

    distortion = np.array([k, k, 0, 0, 0], dtype=np.float32)
    map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, distortion, None, None, (width, height), cv2.CV_32FC1)
    img = cv2.remap(img, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=value)
    return img 
开发者ID:albumentations-team,项目名称:albumentations,代码行数:27,代码来源:functional.py

示例3: rectify_images_float

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def rectify_images_float(img1, x1, img2, x2, K, d, F, shearing=False):
    imsize = (img1.shape[1], img1.shape[0])
    H1, H2, rms, max_error = epipolar.rectify_uncalibrated(x1, x2, F, imsize)
    if shearing:
        S = epipolar.rectify_shearing(H1, H2, imsize)
        H1 = S.dot(H1)
    rH = la.inv(K).dot(H1).dot(K)
    lH = la.inv(K).dot(H2).dot(K)
    map1x, map1y = cv2.initUndistortRectifyMap(K, d, rH, K, imsize, cv.CV_16SC2)
    map2x, map2y = cv2.initUndistortRectifyMap(K, d, lH, K, imsize, cv.CV_16SC2)

    rimg1 = cv2.remap(img1, map1x, map1y,
                      interpolation=cv.INTER_NEAREST,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0, 0))
    rimg2 = cv2.remap(img2, map2x, map2y,
                      interpolation=cv.INTER_NEAREST,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0, 0))

    return rimg1, rimg2


# get NITF metadata that we embedded in the GeoTIFF header 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:26,代码来源:test-mvs.py

示例4: __call__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def __call__(self, img, mask=None):
        if random.random() < self.prob:
            height, width, channel = img.shape

            if 0:
                img = img.copy()
                for x in range(0, width, 10):
                    cv2.line(img, (x, 0), (x, height), (1, 1, 1), 1)
                for y in range(0, height, 10):
                    cv2.line(img, (0, y), (width, y), (1, 1, 1), 1)

            k = random.uniform(-self.distort_limit, self.distort_limit) * 0.00001
            dx = random.uniform(-self.shift_limit, self.shift_limit) * width
            dy = random.uniform(-self.shift_limit, self.shift_limit) * height

            #  map_x, map_y =
            # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
            # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
            # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
            x, y = np.mgrid[0:width:1, 0:height:1]
            x = x.astype(np.float32) - width/2 - dx
            y = y.astype(np.float32) - height/2 - dy
            theta = np.arctan2(y, x)
            d = (x*x + y*y)**0.5
            r = d*(1+k*d*d)
            map_x = r*np.cos(theta) + width/2 + dx
            map_y = r*np.sin(theta) + height/2 + dy

            img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
            if mask is not None:
                mask = cv2.remap(mask, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
        return img, mask 
开发者ID:asanakoy,项目名称:kaggle_carvana_segmentation,代码行数:34,代码来源:transforms.py

示例5: rectify_images_rgb

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def rectify_images_rgb(img1, x1, img2, x2, K, d, F, shearing=False):
    imsize = (img1.shape[1], img1.shape[0])
    H1, H2, rms, max_error = epipolar.rectify_uncalibrated(x1, x2, F, imsize)
    if shearing:
        S = epipolar.rectify_shearing(H1, H2, imsize)
        H1 = S.dot(H1)
    rH = la.inv(K).dot(H1).dot(K)
    lH = la.inv(K).dot(H2).dot(K)

    # TODO: lRect or rRect for img1/img2 ??
    map1x, map1y = cv2.initUndistortRectifyMap(K, d, rH, K, imsize, cv.CV_16SC2)
    map2x, map2y = cv2.initUndistortRectifyMap(K, d, lH, K, imsize, cv.CV_16SC2)
    rimg1 = cv2.remap(img1, map1x, map1y,
                      interpolation=cv.INTER_CUBIC,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0))
    rimg2 = cv2.remap(img2, map2x, map2y,
                      interpolation=cv.INTER_CUBIC,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0))

    return rimg1, rimg2, rms, max_error


# rectify a floating point image pair based on the Fundamental matrix
# use this for XYZ images 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:28,代码来源:test-mvs.py

示例6: __init__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def __init__(self, 
            width, height,
            intrinsic_matrix, 
            undistort_rectify=False,
            extrinsic_matrix=None,
            distortion_coeffs=None,
            rectification_matrix=None,
            projection_matrix=None):

        self.width = width
        self.height = height
        self.intrinsic_matrix = intrinsic_matrix
        self.extrinsic_matrix = extrinsic_matrix
        self.distortion_coeffs = distortion_coeffs
        self.rectification_matrix = rectification_matrix
        self.projection_matrix = projection_matrix
        self.undistort_rectify = undistort_rectify
        self.fx = intrinsic_matrix[0, 0]
        self.fy = intrinsic_matrix[1, 1]
        self.cx = intrinsic_matrix[0, 2]
        self.cy = intrinsic_matrix[1, 2]

        if undistort_rectify:
            self.remap = cv2.initUndistortRectifyMap(
                cameraMatrix=self.intrinsic_matrix,
                distCoeffs=self.distortion_coeffs,
                R=self.rectification_matrix,
                newCameraMatrix=self.projection_matrix,
                size=(width, height),
                m1type=cv2.CV_8U)
        else:
            self.remap = None 
开发者ID:uoip,项目名称:stereo_ptam,代码行数:34,代码来源:dataset.py

示例7: main

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def main():

  basler_undistorted = pickle.load(open("basler_pickle.p", "rb"))

  #objects = []
  #with (open("./basler_pickle.p", "rb")) as openfile:
  #    while True:
  #        try:
  #            basler_undistorted.append(pickle.load(openfile))
  #        except EOFError:
  #            break
    
  image_width  = 1280
  image_height = 1024

  #print(basler_undistorted)

  cam_mtx = basler_undistorted["mtx"]
  cam_dist = basler_undistorted["dist"]
  rvecs = basler_undistorted["rvecs"]
  tvecs = basler_undistorted["tvecs"]
  #imageSize = image_height * image_width
  imageSize = ( image_height, image_width )
  
  #getOptimal...Mtx(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI
  # Doesn't take Rect of validPixROI, contrary to the cpp method
  new_cam_mtx, valid_roi = cv.getOptimalNewCameraMatrix(cam_mtx, cam_dist, imageSize, 1, imageSize, 1) 
  
  # getOptimalNewCameraMatrix() possibly not working like in cpp
  #map1, map2 = cv.initUndistortRectifyMap(cam_mtx, cam_dist, np.eye(3), new_cam_mtx, imageSize, cv.CV_16SC2);
  map1, map2 = cv.initUndistortRectifyMap(cam_mtx, cam_dist, np.eye(3), cam_mtx, imageSize, cv.CV_16SC2);
  
  # map1 and map2 can be used together with cv.remap() for efficient real-time undistortion
  # Only need to be calculated once.
  maps = { "map1": map1, "map2": map2 }
  pickle.dump( maps, open("maps.p", "wb")) 
开发者ID:ddavid,项目名称:fsoco,代码行数:38,代码来源:get-undistortion-maps.py

示例8: init_undistort

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def init_undistort():
    #cv2.initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
    frame_size=(640,480)
    map1, map2=cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, frame_size, cv2.CV_32FC1)
    return map1, map2
   
# this is a faster undistort_crop that only does remapping. Requires call to init_undistort first to
# to create the map1 and map2 
开发者ID:perrytsao,项目名称:pc-drone,代码行数:10,代码来源:blob_detect.py

示例9: distort1

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def distort1(img, k=0, dx=0, dy=0):
    """"
    ## unconverntional augmnet ################################################################################3
    ## https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion

    ## https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    ## https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically
    ## http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/

    ## barrel\pincushion distortion
    """
    height, width = img.shape[:2]
    #  map_x, map_y =
    # cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
    # https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
    # https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
    k = k * 0.00001
    dx = dx * width
    dy = dy * height
    x, y = np.mgrid[0:width:1, 0:height:1]
    x = x.astype(np.float32) - width/2 - dx
    y = y.astype(np.float32) - height/2 - dy
    theta = np.arctan2(y, x)
    d = (x*x + y*y)**0.5
    r = d*(1+k*d*d)
    map_x = r*np.cos(theta) + width/2 + dx
    map_y = r*np.sin(theta) + height/2 + dy

    img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
    return img 
开发者ID:selimsef,项目名称:dsb2018_topcoders,代码行数:32,代码来源:functional.py

示例10: rectify_images

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def rectify_images(img1, x1, img2, x2, K, d, F, shearing=False):
    imsize = (img1.shape[1], img1.shape[0])
    H1, H2, rms, max_error = epipolar.rectify_uncalibrated(x1, x2, F, imsize)
    if shearing:
        S = epipolar.rectify_shearing(H1, H2, imsize)
        H1 = S.dot(H1)
    rH = la.inv(K).dot(H1).dot(K)
    lH = la.inv(K).dot(H2).dot(K)

    # check for y parallax
    max_yparallax = get_y_parallax(x1, x2, rH, lH, imsize)

    # TODO: lRect or rRect for img1/img2 ??
    map1x, map1y = cv2.initUndistortRectifyMap(K, d, rH, K, imsize,
                                               cv.CV_16SC2)
    map2x, map2y = cv2.initUndistortRectifyMap(K, d, lH, K, imsize,
                                               cv.CV_16SC2)

    # Convert the images to RGBA (add an axis with 4 values)
    img1 = np.tile(img1[:, :, np.newaxis], [1, 1, 4])
    img1[:, :, 3] = 255
    img2 = np.tile(img2[:, :, np.newaxis], [1, 1, 4])
    img2[:, :, 3] = 255

    rimg1 = cv2.remap(img1, map1x, map1y,
                      interpolation=cv.INTER_NEAREST,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0, 0))
    rimg2 = cv2.remap(img2, map2x, map2y,
                      interpolation=cv.INTER_NEAREST,
                      borderMode=cv2.BORDER_CONSTANT,
                      borderValue=(0, 0, 0, 0))

    # Put a red background on the invalid values
    # TODO: Return a mask for valid/invalid values
    # TODO: There is aliasing happening on the images border. We should
    # invalidate a margin around the border so we're sure we have only valid
    # pixels
    rimg1[rimg1[:, :, 3] == 0, :] = (255, 0, 0, 255)
    rimg2[rimg2[:, :, 3] == 0, :] = (255, 0, 0, 255)

    return rimg1, rimg2, rms, max_error, lH, rH, max_yparallax


# rectify an image pair based on the Fundamental matrix 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:47,代码来源:test-mvs.py

示例11: calibrate_cameras

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import initUndistortRectifyMap [as 别名]
def calibrate_cameras(self):
        """Calibrate cameras based on found chessboard corners."""
        criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                    100, 1e-5)
        flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST +
                 cv2.CALIB_SAME_FOCAL_LENGTH)
        calib = StereoCalibration()
        (calib.cam_mats["left"], calib.dist_coefs["left"],
         calib.cam_mats["right"], calib.dist_coefs["right"],
         calib.rot_mat, calib.trans_vec, calib.e_mat,
         calib.f_mat) = cv2.stereoCalibrate(self.object_points,
                                            self.image_points["left"],
                                            self.image_points["right"],
                                            self.image_size,
                                            calib.cam_mats["left"],
                                            calib.dist_coefs["left"],
                                            calib.cam_mats["right"],
                                            calib.dist_coefs["right"],
                                            calib.rot_mat,
                                            calib.trans_vec,
                                            calib.e_mat,
                                            calib.f_mat,
                                            criteria=criteria,
                                            flags=flags)[1:]
        (calib.rect_trans["left"], calib.rect_trans["right"],
         calib.proj_mats["left"], calib.proj_mats["right"],
         calib.disp_to_depth_mat, calib.valid_boxes["left"],
         calib.valid_boxes["right"]) = cv2.stereoRectify(calib.cam_mats["left"],
                                                      calib.dist_coefs["left"],
                                                      calib.cam_mats["right"],
                                                      calib.dist_coefs["right"],
                                                      self.image_size,
                                                      calib.rot_mat,
                                                      calib.trans_vec,
                                                      flags=0)
        for side in ("left", "right"):
            (calib.undistortion_map[side],
             calib.rectification_map[side]) = cv2.initUndistortRectifyMap(
                                                        calib.cam_mats[side],
                                                        calib.dist_coefs[side],
                                                        calib.rect_trans[side],
                                                        calib.proj_mats[side],
                                                        self.image_size,
                                                        cv2.CV_32FC1)
        # This is replaced because my results were always bad. Estimates are
        # taken from the OpenCV samples.
        width, height = self.image_size
        focal_length = 0.8 * width
        calib.disp_to_depth_mat = np.float32([[1, 0, 0, -0.5 * width],
                                              [0, -1, 0, 0.5 * height],
                                              [0, 0, 0, -focal_length],
                                              [0, 0, 1, 0]])
        return calib 
开发者ID:erget,项目名称:StereoVision,代码行数:55,代码来源:calibration.py


注:本文中的cv2.initUndistortRectifyMap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。