本文整理汇总了Python中cv2.getRotationMatrix2D方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.getRotationMatrix2D方法的具体用法?Python cv2.getRotationMatrix2D怎么用?Python cv2.getRotationMatrix2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.getRotationMatrix2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cv_rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256):
img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale)
ones = np.ones(shape=(landmarks.shape[0], 1))
stacked_landmarks = np.hstack([landmarks, ones])
new_landmarks = img_mat.dot(stacked_landmarks.T).T
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0:
return image, landmarks, heatmap
else:
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution))
if heatmap is not None:
new_heatmap = np.zeros((heatmap.shape[0], 64, 64))
for i in range(heatmap.shape[0]):
if new_landmarks[i][0] > 0:
new_heatmap[i] = draw_gaussian(new_heatmap[i],
new_landmarks[i]/4.0+1, 1)
return new_image, new_landmarks, new_heatmap
示例2: get_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def get_transform(self, img):
center = img.shape[1::-1] * self._rand_range(
self.center_range[0], self.center_range[1], (2,))
deg = self._rand_range(-self.max_deg, self.max_deg)
if self.step_deg:
deg = deg // self.step_deg * self.step_deg
"""
The correct center is shape*0.5-0.5. This can be verified by:
SHAPE = 7
arr = np.random.rand(SHAPE, SHAPE)
orig = arr
c = SHAPE * 0.5 - 0.5
c = (c, c)
for k in range(4):
mat = cv2.getRotationMatrix2D(c, 90, 1)
arr = cv2.warpAffine(arr, mat, arr.shape)
assert np.all(arr == orig)
"""
mat = cv2.getRotationMatrix2D(tuple(center - 0.5), deg, 1)
return WarpAffineTransform(
mat, img.shape[1::-1], interp=self.interp,
borderMode=self.border, borderValue=self.border_value)
示例3: merge_img
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def merge_img(src_img, dst_img, dst_matrix, dst_points, blur_detail_x=None, blur_detail_y=None, mat_multiple=None):
face_mask = np.zeros(src_img.shape, dtype=src_img.dtype)
for group in core.OVERLAY_POINTS:
cv2.fillConvexPoly(face_mask, cv2.convexHull(dst_matrix[group]), (255, 255, 255))
r = cv2.boundingRect(np.float32([dst_points[:core.FACE_END]]))
center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))
if mat_multiple:
mat = cv2.getRotationMatrix2D(center, 0, mat_multiple)
face_mask = cv2.warpAffine(face_mask, mat, (face_mask.shape[1], face_mask.shape[0]))
if blur_detail_x and blur_detail_y:
face_mask = cv2.blur(face_mask, (blur_detail_x, blur_detail_y), center)
return cv2.seamlessClone(np.uint8(dst_img), src_img, face_mask, center, cv2.NORMAL_CLONE)
示例4: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def __init__(self, y, x, height, width, angle):
"""
A efficient tool to rotate multiple images in the same size.
:author 申瑞珉 (Ruimin Shen)
:param y: The y coordinate of rotation point.
:param x: The x coordinate of rotation point.
:param height: Image height.
:param width: Image width.
:param angle: Rotate angle.
"""
self._mat = cv2.getRotationMatrix2D((x, y), angle, 1.0)
r = np.abs(self._mat[0, :2])
_height, _width = np.inner(r, [height, width]), np.inner(r, [width, height])
fix_y, fix_x = _height / 2 - y, _width / 2 - x
self._mat[:, 2] += [fix_x, fix_y]
self._size = int(_width), int(_height)
示例5: __rotate_image_size_corrected
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def __rotate_image_size_corrected(image, angle):
# Calculate max size for the rotated template and image offset
image_size_height, image_size_width = image.shape
image_center_x = image_size_width // 2
image_center_y = image_size_height // 2
# Create rotation matrix
rotation_matrix = cv2.getRotationMatrix2D((image_center_x, image_center_y), -angle, 1)
# Apply offset
new_image_size = int(math.ceil(cv2.norm((image_size_height, image_size_width), normType=cv2.NORM_L2)))
rotation_matrix[0, 2] += (new_image_size - image_size_width) / 2
rotation_matrix[1, 2] += (new_image_size - image_size_height) / 2
# Apply rotation to the template
image_rotated = cv2.warpAffine(image, rotation_matrix, (new_image_size, new_image_size))
return image_rotated
示例6: rotate_oriented_bbox_to_horizontal
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotate_oriented_bbox_to_horizontal(center, bbox):
"""
Step 2 of Figure 5 in seglink paper
Rotate bbox horizontally along a `center` point
Args:
center: the center of rotation
bbox: [cx, cy, w, h, theta]
"""
assert np.shape(center) == (2, ), "center must be a vector of length 2"
assert np.shape(bbox) == (5, ) or np.shape(bbox) == (4, ), "bbox must be a vector of length 4 or 5"
bbox = np.asarray(bbox.copy(), dtype = np.float32)
cx, cy, w, h, theta = bbox;
M = cv2.getRotationMatrix2D(center, theta, scale = 1) # 2x3
cx, cy = np.dot(M, np.transpose([cx, cy, 1]))
bbox[0:2] = [cx, cy]
return bbox
示例7: rotate_horizontal_bbox_to_oriented
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotate_horizontal_bbox_to_oriented(center, bbox):
"""
Step 4 of Figure 5 in seglink paper:
Rotate the cropped horizontal bbox back to its original direction
Args:
center: the center of rotation
bbox: [cx, cy, w, h, theta]
Return: the oriented bbox
"""
assert np.shape(center) == (2, ), "center must be a vector of length 2"
assert np.shape(bbox) == (5, ) , "bbox must be a vector of length 4 or 5"
bbox = np.asarray(bbox.copy(), dtype = np.float32)
cx, cy, w, h, theta = bbox;
M = cv2.getRotationMatrix2D(center, -theta, scale = 1) # 2x3
cx, cy = np.dot(M, np.transpose([cx, cy, 1]))
bbox[0:2] = [cx, cy]
return bbox
示例8: rotate_bound
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# centre
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# perform the actual rotation and return the image
return cv2.warpAffine(image, M, (nW, nH))
示例9: __rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def __rotate(self, image, landmarks, max_angle):
"""
Do image rotate
Args:
image: a numpy type
landmarks: face landmarks with format [(x1, y1), ...]. range is 0-w or h in int
max_angle: random to rotate in [-max_angle, max_angle]. range is 0-180.
Return:
an image and landmarks will be returned
Raises:
No
"""
c_x = (min(landmarks[:, 0]) + max(landmarks[:, 0])) / 2
c_y = (min(landmarks[:, 1]) + max(landmarks[:, 1])) / 2
h, w = image.shape[:2]
angle = np.random.randint(-max_angle, max_angle)
M = cv2.getRotationMatrix2D((c_x, c_y), angle, 1)
image = cv2.warpAffine(image, M, (w, h))
b = np.ones((landmarks.shape[0], 1))
d = np.concatenate((landmarks, b), axis=1)
landmarks = np.dot(d, np.transpose(M))
return image, landmarks
示例10: rotation
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotation(img, degrees, interpolation=cv2.INTER_LINEAR, value=0):
if isinstance(degrees, list):
if len(degrees) == 2:
degree = random.uniform(degrees[0], degrees[1])
else:
degree = random.choice(degrees)
else:
degree = degrees
h, w = img.shape[0:2]
center = (w / 2, h / 2)
map_matrix = cv2.getRotationMatrix2D(center, degree, 1.0)
img = cv2.warpAffine(
img,
map_matrix, (w, h),
flags=interpolation,
borderMode=cv2.BORDER_CONSTANT,
borderValue=value)
return img
示例11: rotate_img_np
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotate_img_np(img, gtboxes_and_label, r_theta):
h, w, c = img.shape
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, r_theta, 1.0)
cos, sin = np.abs(M[0, 0]), np.abs(M[0, 1])
nW, nH = int(h*sin + w*cos), int(h*cos + w*sin) # new W and new H
M[0, 2] += (nW/2) - center[0]
M[1, 2] += (nH/2) - center[1]
rotated_img = cv2.warpAffine(img, M, (nW, nH))
# -------
new_points_list = []
obj_num = len(gtboxes_and_label)
for st in range(0, 7, 2):
points = gtboxes_and_label[:, st:st+2]
expand_points = np.concatenate((points, np.ones(shape=(obj_num, 1))), axis=1)
new_points = np.dot(M, expand_points.T)
new_points = new_points.T
new_points_list.append(new_points)
gtboxes = np.concatenate(new_points_list, axis=1)
gtboxes_and_label = np.concatenate((gtboxes, gtboxes_and_label[:, -1].reshape(-1, 1)), axis=1)
gtboxes_and_label = np.asarray(gtboxes_and_label, dtype=np.int32)
return rotated_img, gtboxes_and_label
示例12: rotate_bound
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# center
h, w = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated = cv2.warpAffine(image, M, (nW, nH))
return rotated
示例13: dumpRotateImage
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def dumpRotateImage(img, degree, pt1, pt2, pt3, pt4):
height, width = img.shape[:2]
heightNew = int(width * fabs(sin(radians(degree))) + height * fabs(cos(radians(degree))))
widthNew = int(height * fabs(sin(radians(degree))) + width * fabs(cos(radians(degree))))
matRotation = cv2.getRotationMatrix2D((width // 2, height // 2), degree, 1)
matRotation[0, 2] += (widthNew - width) // 2
matRotation[1, 2] += (heightNew - height) // 2
imgRotation = cv2.warpAffine(img, matRotation, (widthNew, heightNew), borderValue=(255, 255, 255))
pt1 = list(pt1)
pt3 = list(pt3)
[[pt1[0]], [pt1[1]]] = np.dot(matRotation, np.array([[pt1[0]], [pt1[1]], [1]]))
[[pt3[0]], [pt3[1]]] = np.dot(matRotation, np.array([[pt3[0]], [pt3[1]], [1]]))
ydim, xdim = imgRotation.shape[:2]
imgOut = imgRotation[max(1, int(pt1[1])): min(ydim - 1, int(pt3[1])),
max(1, int(pt1[0])): min(xdim - 1, int(pt3[0]))]
return imgOut
示例14: random_rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def random_rotate(self, img):
"""Random rotations by 0, 90, 180, 360 degrees"""
theta = np.random.choice([0, 90, 180, 360])
if theta == 0:
return img
h, w, _ = img.shape
mat = cv2.getRotationMatrix2D((w / 2, h / 2), theta, 1)
return cv2.warpAffine(img, mat, (w, h))
示例15: apply_transform_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getRotationMatrix2D [as 别名]
def apply_transform_image(image, rot,sc, horz_flip, inputRes=None):
meanval = (104.00699, 116.66877, 122.67892)
if inputRes is not None:
image = sm.imresize(image, inputRes)
#print(image.shape)
h, w = image.shape[:2]
center = (w / 2, h / 2)
assert (center != 0) # Strange behaviour warpAffine
M = cv2.getRotationMatrix2D(center, rot, sc)
image = np.array(image, dtype=np.float32)
image = np.subtract(image, np.array(meanval, dtype=np.float32))
flagval = cv2.INTER_CUBIC
image = cv2.warpAffine(image, M, (w,h),flags=flagval)
if horz_flip:
image = cv2.flip(image,flipCode=1)
if image.ndim == 2:
image=image[:,:,np.newaxis]
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2,0,1))
image = torch.from_numpy(image)
return image