本文整理汇总了Python中cv2.getPerspectiveTransform方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.getPerspectiveTransform方法的具体用法?Python cv2.getPerspectiveTransform怎么用?Python cv2.getPerspectiveTransform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.getPerspectiveTransform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: crop_and_warp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def crop_and_warp(img, crop_rect):
"""Crops and warps a rectangular section from an image into a square of similar size."""
# Rectangle described by top left, top right, bottom right and bottom left points
top_left, top_right, bottom_right, bottom_left = crop_rect[0], crop_rect[1], crop_rect[2], crop_rect[3]
# Explicitly set the data type to float32 or `getPerspectiveTransform` will throw an error
src = np.array([top_left, top_right, bottom_right, bottom_left], dtype='float32')
# Get the longest side in the rectangle
side = max([
distance_between(bottom_right, top_right),
distance_between(top_left, bottom_left),
distance_between(bottom_right, bottom_left),
distance_between(top_left, top_right)
])
# Describe a square with side of the calculated length, this is the new perspective we want to warp to
dst = np.array([[0, 0], [side - 1, 0], [side - 1, side - 1], [0, side - 1]], dtype='float32')
# Gets the transformation matrix for skewing the image to fit a square by comparing the 4 before and after points
m = cv2.getPerspectiveTransform(src, dst)
# Performs the transformation on the original image
return cv2.warpPerspective(img, m, (int(side), int(side)))
示例2: align
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def align(image, points):
"""
:param image:
:param points:
:return: aligned image
"""
# alignment
origin_point = np.require(np.array(points).reshape((4, 2)), dtype=np.single)
height = int(max(np.linalg.norm(origin_point[0] - origin_point[1]), np.linalg.norm(origin_point[2] - origin_point[3])))
width = int(max(np.linalg.norm(origin_point[0] - origin_point[3]), np.linalg.norm(origin_point[1] - origin_point[2])))
target_point = np.float32([[0, 0], [0, height], [width, height], [width, 0]])
map_matrix = cv2.getPerspectiveTransform(origin_point, target_point)
cols = width + 1
rows = height + 1
color = cv2.warpPerspective(image, map_matrix, (cols, rows))
return color
示例3: Perspective_aug
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def Perspective_aug(src,strength,label=None):
image = src
pts_base = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]])
pts1=np.random.rand(4, 2)*random.uniform(-strength,strength)+pts_base
pts1=pts1.astype(np.float32)
#pts1 =np.float32([[56, 65], [368, 52], [28, 387], [389, 398]])
M = cv2.getPerspectiveTransform(pts1, pts_base)
trans_img = cv2.warpPerspective(image, M, (src.shape[1], src.shape[0]))
label_rotated=None
if label is not None:
label=label.T
full_label = np.row_stack((label, np.ones(shape=(1, label.shape[1]))))
label_rotated = np.dot(M, full_label)
label_rotated=label_rotated.astype(np.int32)
label_rotated=label_rotated.T
return trans_img,label_rotated
示例4: pivot_stitch
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def pivot_stitch(img, wd):
# Stitch the area in between
D = stitch(img[:, 1280 - wd:1280], img[:, 1280:1280 + wd], sigma=15.0)
# Warp backwards
pt1 = np.dot(D['H'], [wd, 400, 1])
pt3 = np.dot(D['H'], [wd, 800, 1])
pt1 = pt1 / pt1[2]
pt3 = pt3 / pt3[2]
src = np.zeros((4, 2), np.float32)
dst = np.zeros((4, 2), np.float32)
src[0] = [0, 0]
src[1] = pt1[:2]
src[2] = [0, 1280]
src[3] = pt3[:2]
dst = np.array(src)
dst[1] = [2 * wd - 1, 400]
dst[3] = [2 * wd - 1, 800]
result = np.copy(img)
M = cv2.getPerspectiveTransform(src, dst)
result[:, 1280 - wd:1280 +
wd] = cv2.warpPerspective(D['res'], M, (2 * wd, 1280))
result[:, 1280 - wd:1280 + wd] = D['res']
return result
示例5: do_rotation_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def do_rotation_transform(image, mask, angle=0):
height, width = image.shape[:2]
cc = np.cos(angle / 180 * np.pi)
ss = np.sin(angle / 180 * np.pi)
rotate_matrix = np.array([[cc, -ss], [ss, cc]])
box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ], np.float32)
box1 = box0 - np.array([width / 2, height / 2])
box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2, height / 2])
box0 = box0.astype(np.float32)
box1 = box1.astype(np.float32)
mat = cv2.getPerspectiveTransform(box0, box1)
image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101,
borderValue=(0, 0, 0,))
mask = cv2.warpPerspective(mask, mat, (width, height), flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_REFLECT_101,
borderValue=(0, 0, 0,))
# mask = (mask > 0.5).astype(np.float32)
return image, mask
示例6: do_horizontal_shear
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def do_horizontal_shear(image, mask, scale=0):
height, width = image.shape[:2]
dx = int(scale * width)
box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ], np.float32)
box1 = np.array([[+dx, 0], [width + dx, 0], [width - dx, height], [-dx, height], ], np.float32)
box0 = box0.astype(np.float32)
box1 = box1.astype(np.float32)
mat = cv2.getPerspectiveTransform(box0, box1)
image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101, borderValue=(0, 0, 0,))
mask = cv2.warpPerspective(mask, mat, (width, height), flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_REFLECT_101, borderValue=(0, 0, 0,))
# mask = (mask > 0.5).astype(np.float32)
return image, mask
示例7: per_trans
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def per_trans(img,cols,rows,img_path_mod):
#3 rotational transformations
#transformation 1
pts7 = np.float32([[2,3],[93,4],[5,90],[92,91]])
pts8 = np.float32([[0,0],[96,0],[0,96],[96,96]])
M8 = cv2.getPerspectiveTransform(pts7,pts8)
dst8 = cv2.warpPerspective(img,M8,(96,96))
cv2.imwrite(img_path_mod + '_pt1.jpg',dst8)
#transformation 2
pts9 = np.float32([[6,7],[89,8],[9,87],[85,88]])
pts10 = np.float32([[0,0],[96,0],[0,96],[96,96]])
M9 = cv2.getPerspectiveTransform(pts9,pts10)
dst9 = cv2.warpPerspective(img,M9,(96,96))
cv2.imwrite(img_path_mod + '_pt2.jpg',dst9)
#transformation 3
pts11 = np.float32([[10,11],[93,12],[13,82],[83,84]])
pts12 = np.float32([[0,0],[96,0],[0,96],[96,96]])
M10 = cv2.getPerspectiveTransform(pts11,pts12)
dst10 = cv2.warpPerspective(img,M10,(96,96))
cv2.imwrite(img_path_mod + '_pt3.jpg',dst10)
示例8: perspective_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def perspective_transform(img, points):
"""Applies a 4-point perspective transformation in `img` so that `points`
are the new corners."""
source = np.array(
points,
dtype="float32")
dest = np.array([
[TRANSF_SIZE, TRANSF_SIZE],
[0, TRANSF_SIZE],
[0, 0],
[TRANSF_SIZE, 0]],
dtype="float32")
transf = cv2.getPerspectiveTransform(source, dest)
warped = cv2.warpPerspective(img, transf, (TRANSF_SIZE, TRANSF_SIZE))
return warped
示例9: shift_scale_rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def shift_scale_rotate(img, angle, scale, dx, dy, borderMode=cv2.BORDER_CONSTANT):
height, width = img.shape[:2]
cc = math.cos(angle / 180 * math.pi) * scale
ss = math.sin(angle / 180 * math.pi) * scale
rotate_matrix = np.array([[cc, -ss], [ss, cc]])
box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ])
box1 = box0 - np.array([width / 2, height / 2])
box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx * width, height / 2 + dy * height])
box0 = box0.astype(np.float32)
box1 = box1.astype(np.float32)
mat = cv2.getPerspectiveTransform(box0, box1)
img = cv2.warpPerspective(img, mat, (width, height),
flags=cv2.INTER_NEAREST,
borderMode=borderMode)
return img
示例10: shift_scale_rotate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def shift_scale_rotate(img, angle, scale, dx, dy):
height, width = img.shape[:2]
cc = math.cos(angle/180*math.pi) * scale
ss = math.sin(angle/180*math.pi) * scale
rotate_matrix = np.array([[cc, -ss], [ss, cc]])
box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ])
box1 = box0 - np.array([width/2, height/2])
box1 = np.dot(box1, rotate_matrix.T) + np.array([width/2+dx*width, height/2+dy*height])
box0 = box0.astype(np.float32)
box1 = box1.astype(np.float32)
mat = cv2.getPerspectiveTransform(box0, box1)
img = cv2.warpPerspective(img, mat, (width, height),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101)
return img
示例11: crop_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def crop_image(src, points, dst_height=None):
"""
Crop heat map with points.
:param src: 8-bit single-channel image (map).
:param points: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]].
:return: dst_heat_map: Cropped image. 8-bit single-channel image (map) of heat map.
src_points: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]].
dst_points: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]].
"""
src_image = src.copy()
src_points = np.float32(points)
width = round((cal_distance(points[0], points[1]) + cal_distance(points[2], points[3])) / 2)
height = round((cal_distance(points[1], points[2]) + cal_distance(points[3], points[0])) / 2)
if dst_height is not None:
ratio = dst_height / min(width, height)
width = int(width * ratio)
height = int(height * ratio)
crop_points = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
perspective_mat = cv2.getPerspectiveTransform(src=src_points, dst=crop_points)
dst_heat_map = cv2.warpPerspective(src_image, perspective_mat, (width, height),
borderValue=0, borderMode=cv2.BORDER_CONSTANT)
return dst_heat_map, src_points, crop_points
示例12: un_warping
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def un_warping(box, src_points, crop_points):
"""
Unwarp the character bounding boxes.
:param box: The character bounding box.
:param src_points: Points before crop.
:param crop_points: Points after crop.
:return: The character bounding boxes after unwarp.
"""
perspective_mat = cv2.getPerspectiveTransform(src=crop_points, dst=src_points)
new_box = list()
for x, y in box:
new_x = int((perspective_mat[0][0] * x + perspective_mat[0][1] * y + perspective_mat[0][2]) /
(perspective_mat[2][0] * x + perspective_mat[2][1] * y + perspective_mat[2][2]))
new_y = int((perspective_mat[1][0] * x + perspective_mat[1][1] * y + perspective_mat[1][2]) /
(perspective_mat[2][0] * x + perspective_mat[2][1] * y + perspective_mat[2][2]))
new_box.append([new_x, new_y])
return new_box
示例13: perspective_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def perspective_transform(src, dst_shape, dst_points):
"""
Perspective Transform
:param src: Image to transform.
:param dst_shape: Tuple of 2 intergers(rows and columns).
:param dst_points: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]].
:return: Image after perspective transform.
"""
img = src.copy()
h, w = img.shape[:2]
src_points = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
dst_points = np.float32(dst_points)
perspective_mat = cv2.getPerspectiveTransform(src=src_points, dst=dst_points)
dst = cv2.warpPerspective(img, perspective_mat, (dst_shape[1], dst_shape[0]),
borderValue=0, borderMode=cv2.BORDER_CONSTANT)
return dst
示例14: drawFloorCrop
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def drawFloorCrop(event, x, y, flags, params):
global perspectiveMatrix, name, RENEW_TETRAGON
imgCroppingPolygon = np.zeros_like(params['imgFloorCorners'])
if event == cv2.EVENT_RBUTTONUP:
cv2.destroyWindow(f'Floor Corners for {name}')
if len(params['croppingPolygons'][name]) > 4 and event == cv2.EVENT_LBUTTONUP:
RENEW_TETRAGON = True
h = params['imgFloorCorners'].shape[0]
# delete 5th extra vertex of the floor cropping tetragon
params['croppingPolygons'][name] = np.delete(params['croppingPolygons'][name], -1, 0)
params['croppingPolygons'][name] = params['croppingPolygons'][name] - [h,0]
# Sort cropping tetragon vertices counter-clockwise starting with top left
params['croppingPolygons'][name] = counterclockwiseSort(params['croppingPolygons'][name])
# Get the matrix of perspective transformation
params['croppingPolygons'][name] = np.reshape(params['croppingPolygons'][name], (4,2))
tetragonVertices = np.float32(params['croppingPolygons'][name])
tetragonVerticesUpd = np.float32([[0,0], [0,h], [h,h], [h,0]])
perspectiveMatrix[name] = cv2.getPerspectiveTransform(tetragonVertices, tetragonVerticesUpd)
if event == cv2.EVENT_LBUTTONDOWN:
if len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON:
params['croppingPolygons'][name] = np.array([[0,0]])
RENEW_TETRAGON = False
if len(params['croppingPolygons'][name]) == 1:
params['croppingPolygons'][name][0] = [x,y]
params['croppingPolygons'][name] = np.append(params['croppingPolygons'][name], [[x,y]], axis=0)
if event == cv2.EVENT_MOUSEMOVE and not (len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON):
params['croppingPolygons'][name][-1] = [x,y]
if len(params['croppingPolygons'][name]) > 1:
cv2.fillPoly(
imgCroppingPolygon,
[np.reshape(
params['croppingPolygons'][name],
(len(params['croppingPolygons'][name]),2)
)],
BGR_COLOR['green'], cv2.LINE_AA)
imgCroppingPolygon = cv2.addWeighted(params['imgFloorCorners'], 1.0, imgCroppingPolygon, 0.5, 0.)
cv2.imshow(f'Floor Corners for {name}', imgCroppingPolygon)
示例15: normalize_contrs
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import getPerspectiveTransform [as 别名]
def normalize_contrs(img,cntr_pts):
ratio = img.shape[0] / 300.0
norm_pts = np.zeros((4,2), dtype="float32")
s = cntr_pts.sum(axis=1)
norm_pts[0] = cntr_pts[np.argmin(s)]
norm_pts[2] = cntr_pts[np.argmax(s)]
d = np.diff(cntr_pts,axis=1)
norm_pts[1] = cntr_pts[np.argmin(d)]
norm_pts[3] = cntr_pts[np.argmax(d)]
norm_pts *= ratio
(top_left, top_right, bottom_right, bottom_left) = norm_pts
width1 = np.sqrt(((bottom_right[0] - bottom_left[0]) ** 2) + ((bottom_right[1] - bottom_left[1]) ** 2))
width2 = np.sqrt(((top_right[0] - top_left[0]) ** 2) + ((top_right[1] - top_left[1]) ** 2))
height1 = np.sqrt(((top_right[0] - bottom_right[0]) ** 2) + ((top_right[1] - bottom_right[1]) ** 2))
height2 = np.sqrt(((top_left[0] - bottom_left[0]) ** 2) + ((top_left[1] - bottom_left[1]) ** 2))
max_width = max(int(width1), int(width2))
max_height = max(int(height1), int(height2))
dst = np.array([[0,0], [max_width -1, 0],[max_width -1, max_height -1],[0, max_height-1]], dtype="float32")
persp_matrix = cv2.getPerspectiveTransform(norm_pts,dst)
return cv2.warpPerspective(img,persp_matrix,(max_width,max_height))