本文整理汇总了Python中cv2.filter2D方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.filter2D方法的具体用法?Python cv2.filter2D怎么用?Python cv2.filter2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.filter2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ssim
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
示例2: filter2D
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def filter2D(input_arr, filter):
"""
2D filtering (i.e. convolution but without mirroring the filter). Mostly a convenience wrapper
around OpenCV.
Parameters
----------
input_arr : numpy array, HxW size
filter : numpy array, H1xW1 size
Returns
-------
result : numpy array, HxW size
"""
return cv2.filter2D(input_arr,
-1,
filter,
borderType=cv2.BORDER_CONSTANT)
示例3: batch_filter3D
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def batch_filter3D(input_arr, filters):
"""
3D filtering (i.e. convolution but without mirroring the filter).
Parameters
----------
input_arr : numpy array, NxHxWxC size where N is the number of images to be filtered
filter : numpy array, H1xW1xC size
Returns
-------
result : numpy array, NxHxW size
"""
assert input_arr.shape[3] == filters.shape[2]
num_input = input_arr.shape[0]
output = np.zeros(input_arr.shape[:3] + (filters.shape[-1],))
for n in xrange(num_input):
input1 = input_arr[n]
for f in xrange(filters.shape[-1]):
for c in xrange(filters.shape[-2]):
output[n,:,:,f] += filter2D(input1[...,c].copy(), filters[...,c,f].copy())
return output
示例4: ssim
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
示例5: push_heuristic
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def push_heuristic(self, depth_heightmap):
num_rotations = 16
for rotate_idx in range(num_rotations):
rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx*(360.0/num_rotations), reshape=False, order=0)
valid_areas = np.zeros(rotated_heightmap.shape)
valid_areas[ndimage.interpolation.shift(rotated_heightmap, [0,-25], order=0) - rotated_heightmap > 0.02] = 1
# valid_areas = np.multiply(valid_areas, rotated_heightmap)
blur_kernel = np.ones((25,25),np.float32)/9
valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel)
tmp_push_predictions = ndimage.rotate(valid_areas, -rotate_idx*(360.0/num_rotations), reshape=False, order=0)
tmp_push_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1])
if rotate_idx == 0:
push_predictions = tmp_push_predictions
else:
push_predictions = np.concatenate((push_predictions, tmp_push_predictions), axis=0)
best_pix_ind = np.unravel_index(np.argmax(push_predictions), push_predictions.shape)
return best_pix_ind
示例6: grasp_heuristic
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def grasp_heuristic(self, depth_heightmap):
num_rotations = 16
for rotate_idx in range(num_rotations):
rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx*(360.0/num_rotations), reshape=False, order=0)
valid_areas = np.zeros(rotated_heightmap.shape)
valid_areas[np.logical_and(rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0,-25], order=0) > 0.02, rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0,25], order=0) > 0.02)] = 1
# valid_areas = np.multiply(valid_areas, rotated_heightmap)
blur_kernel = np.ones((25,25),np.float32)/9
valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel)
tmp_grasp_predictions = ndimage.rotate(valid_areas, -rotate_idx*(360.0/num_rotations), reshape=False, order=0)
tmp_grasp_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1])
if rotate_idx == 0:
grasp_predictions = tmp_grasp_predictions
else:
grasp_predictions = np.concatenate((grasp_predictions, tmp_grasp_predictions), axis=0)
best_pix_ind = np.unravel_index(np.argmax(grasp_predictions), grasp_predictions.shape)
return best_pix_ind
示例7: preprocess_filt_hps
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def preprocess_filt_hps(self):
'''
Do the pre processing using (orig - low-pass filter) = high-pass filter filter (3.9/5.3 min).
'''
import cv2
import numpy as np
if self.zeroMask is not None:
self.zeroMask = (self.I1 == 0)
kernel = -np.ones((self.WallisFilterWidth,self.WallisFilterWidth), dtype=np.float32)
kernel[int((self.WallisFilterWidth-1)/2),int((self.WallisFilterWidth-1)/2)] = kernel.size - 1
kernel = kernel / kernel.size
# pdb.set_trace()
self.I1 = cv2.filter2D(self.I1,-1,kernel,borderType=cv2.BORDER_CONSTANT)
self.I2 = cv2.filter2D(self.I2,-1,kernel,borderType=cv2.BORDER_CONSTANT)
示例8: preprocess_filt_sob
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def preprocess_filt_sob(self):
'''
Do the pre processing using sobel filter (4.5/5.8 min).
'''
import cv2
import numpy as np
if self.zeroMask is not None:
self.zeroMask = (self.I1 == 0)
sobelx = cv2.getDerivKernels(1,0,self.WallisFilterWidth)
kernelx = np.outer(sobelx[0],sobelx[1])
sobely = cv2.getDerivKernels(0,1,self.WallisFilterWidth)
kernely = np.outer(sobely[0],sobely[1])
kernel = kernelx + kernely
self.I1 = cv2.filter2D(self.I1,-1,kernel,borderType=cv2.BORDER_CONSTANT)
self.I2 = cv2.filter2D(self.I2,-1,kernel,borderType=cv2.BORDER_CONSTANT)
示例9: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def __call__(self, img):
if random.random() < self.prob:
alpha = self.limit * random.uniform(0, 1)
kernel = np.ones((3, 3), np.float32)/9 * 0.2
colored = img[..., :3]
colored = alpha * cv2.filter2D(colored, -1, kernel) + (1-alpha) * colored
maxval = np.max(img[..., :3])
dtype = img.dtype
img[..., :3] = clip(colored, dtype, maxval)
return img
# https://github.com/pytorch/vision/pull/27/commits/659c854c6971ecc5b94dca3f4459ef2b7e42fb70
# color augmentation
# brightness, contrast, saturation-------------
# from mxnet code, see: https://github.com/dmlc/mxnet/blob/master/python/mxnet/image.py
示例10: _ssim
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def _ssim(img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
)
return ssim_map.mean()
示例11: motion_blur
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def motion_blur(self, data, random_state):
images = data['image'].copy()
labels = data['label'].copy()
# generating the kernel
kernel_motion_blur = np.zeros((self.size, self.size))
if random.random() > 0.5: # horizontal kernel
kernel_motion_blur[int((self.size-1)/2), :] = np.ones(self.size)
else: # vertical kernel
kernel_motion_blur[:, int((self.size-1)/2)] = np.ones(self.size)
kernel_motion_blur = kernel_motion_blur / self.size
k = min(self.sections, images.shape[0])
selected_idx = np.random.choice(images.shape[0], k, replace=True)
for idx in selected_idx:
# applying the kernel to the input image
images[idx] = cv2.filter2D(images[idx], -1, kernel_motion_blur)
return images, labels
示例12: backprojection
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def backprojection(target, roihist):
'''图像预处理'''
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# Now convolute with circular disc
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
cv2.filter2D(dst,-1,disc,dst)
# threshold and binary AND
ret,binary = cv2.threshold(dst,80,255,0)
# 创建 核
kernel = np.ones((5,5), np.uint8)
iter_time = 1
# 闭运算
binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel,iterations=iter_time)
thresh = cv2.merge((binary,binary,binary))
target_filter = cv2.bitwise_and(target,thresh)
return binary, target_filter
示例13: get_mag_avg
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def get_mag_avg(img):
img = np.sqrt(img)
kernels = get_kernels()
mag = np.zeros(img.shape, dtype='float32')
for kernel_filter in kernels:
gx = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_REFLECT)
gy = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_REFLECT)
mag += cv2.magnitude(gx, gy)
mag /= len(kernels)
return np.uint8(mag)
示例14: blur_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def blur_image(self, image):
def rand_kernel():
size = np.random.randn(1)
size = int(np.round(size)) * 2 + 1
if size < 0: return None
if random.random() < 0.5: return None
size = min(size, 45)
kernel = np.zeros((size, size))
c = int(size/2)
wx = random.random()
kernel[:, c] += 1. / size * wx
kernel[c, :] += 1. / size * (1-wx)
return kernel
kernel = rand_kernel()
if kernel is not None:
image = cv2.filter2D(image, -1, kernel)
return image
示例15: linear_motion_blur
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import filter2D [as 别名]
def linear_motion_blur(self, img, angle, length):
""":param angle: in degree"""
rad = np.deg2rad(angle)
dx = np.cos(rad)
dy = np.sin(rad)
a = int(max(list(map(abs, (dx, dy)))) * length * 2)
if a <= 0:
return img
kern = np.zeros((a, a))
cx, cy = a // 2, a // 2
dx, dy = list(map(int, (dx * length + cx, dy * length + cy)))
cv2.line(kern, (cx, cy), (dx, dy), 1.0)
s = kern.sum()
if s == 0:
kern[cx, cy] = 1.0
else:
kern /= s
return cv2.filter2D(img, -1, kern)