本文整理汇总了Python中cv2.erode方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.erode方法的具体用法?Python cv2.erode怎么用?Python cv2.erode使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.erode方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: movement
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def movement(mat_1,mat_2):
mat_1_gray = cv2.cvtColor(mat_1.copy(),cv2.COLOR_BGR2GRAY)
mat_1_gray = cv2.blur(mat_1_gray,(blur1,blur1))
_,mat_1_gray = cv2.threshold(mat_1_gray,100,255,0)
mat_2_gray = cv2.cvtColor(mat_2.copy(),cv2.COLOR_BGR2GRAY)
mat_2_gray = cv2.blur(mat_2_gray,(blur1,blur1))
_,mat_2_gray = cv2.threshold(mat_2_gray,100,255,0)
mat_2_gray = cv2.bitwise_xor(mat_1_gray,mat_2_gray)
mat_2_gray = cv2.blur(mat_2_gray,(blur2,blur2))
_,mat_2_gray = cv2.threshold(mat_2_gray,70,255,0)
mat_2_gray = cv2.erode(mat_2_gray,np.ones((erodeval,erodeval)))
mat_2_gray = cv2.dilate(mat_2_gray,np.ones((4,4)))
_, contours,__ = cv2.findContours(mat_2_gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:return True #If there were any movements
return False #if not
#Pedestrian Recognition Thread
示例2: _pre_process_input_minimal
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def _pre_process_input_minimal(self, img, mask, t, darker_fg=True):
if self._buff_grey is None:
self._buff_grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
if mask is None:
mask = np.ones_like(self._buff_grey) * 255
cv2.cvtColor(img,cv2.COLOR_BGR2GRAY, self._buff_grey)
cv2.erode(self._buff_grey, self._erode_kern, dst=self._buff_grey)
if darker_fg:
cv2.subtract(255, self._buff_grey, self._buff_grey)
if mask is not None:
cv2.bitwise_and(self._buff_grey, mask, self._buff_grey)
return self._buff_grey
示例3: SeamlessClone_trimap
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def SeamlessClone_trimap(srcIm,dstIm,imMask,offX,offY):
dstIm=dstIm.copy()
bimsk=imMask>0
new_msk=np.zeros(dstIm.shape[:2],dtype='uint8')
new_msk[offY:offY+imMask.shape[0],offX:offX+imMask.shape[1]]=imMask
dstIm[new_msk>0]=srcIm[imMask>0]
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
bimsk=bimsk.astype('uint8')
bdmsk=cv2.dilate(bimsk,kernel)-cv2.erode(bimsk,kernel)
mask255=bdmsk>0
mask255=(mask255*255).astype('uint8')
offCenter=(int(offX+imMask.shape[1]/2),int(offY+imMask.shape[0]/2))
if np.any(bdmsk>0):
outputIm=cv2.seamlessClone(srcIm,dstIm,mask255,offCenter,cv2.MIXED_CLONE)
else:
outputIm=dstIm
#when one object have very few pixels, bdmsk will be totally zero, which will cause segmentation fault.
return outputIm,new_msk
示例4: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def __init__(self, fin, scale=1.0, fmask=None):
self.fin = fin
# read in distort
with open(fin, 'r') as f:
header = f.readline().rstrip()
chunks = re.sub(r'[^0-9,]', '', header).split(',')
self.mapu = np.zeros((int(chunks[1]), int(chunks[0])),
dtype=np.float32)
self.mapv = np.zeros((int(chunks[1]), int(chunks[0])),
dtype=np.float32)
for line in f.readlines():
chunks = line.rstrip().split(' ')
self.mapu[int(chunks[0]), int(chunks[1])] = float(chunks[3])
self.mapv[int(chunks[0]), int(chunks[1])] = float(chunks[2])
# generate a mask
self.mask = np.ones(self.mapu.shape, dtype=np.uint8)
self.mask = cv2.remap(self.mask, self.mapu, self.mapv, cv2.INTER_LINEAR)
kernel = np.ones((30, 30), np.uint8)
self.mask = cv2.erode(self.mask, kernel, iterations=1)
# crop black regions out
h, w = self.mask.shape
self.x_lim = [f(np.where(self.mask[int(h/2), :])[0])
for f in [np.min, np.max]]
self.y_lim = [f(np.where(self.mask[:, int(w/2)])[0])
for f in [np.min, np.max]]
示例5: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def __getitem__(self, idx):
'''
:param idx: Index of the image file
:return: returns the image and corresponding label file.
'''
image_name = self.imList[idx]
label_name = self.labelList[idx]
image = cv2.imread(image_name)
label = cv2.imread(label_name, 0)
label_bool = 255 * ((label > 200).astype(np.uint8))
if self.transform:
[image, label] = self.transform(image, label_bool)
if self.edge:
np_label = 255 * label.data.numpy().astype(np.uint8)
kernel = np.ones((self.kernel_size , self.kernel_size ), np.uint8)
erosion = cv2.erode(np_label, kernel, iterations=1)
dilation = cv2.dilate(np_label, kernel, iterations=1)
boundary = dilation - erosion
edgemap = 255 * torch.ones_like(label)
edgemap[torch.from_numpy(boundary) > 0] = label[torch.from_numpy(boundary) > 0]
return (image, label, edgemap)
else:
return (image, label)
示例6: coherence_filter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
h, w = img.shape[:2]
for i in xrange(iter_n):
print(i)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3)
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
x, y = eigen[:,:,1,0], eigen[:,:,1,1]
gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
gvv = x*x*gxx + 2*x*y*gxy + y*y*gyy
m = gvv < 0
ero = cv2.erode(img, None)
dil = cv2.dilate(img, None)
img1 = ero
img1[m] = dil[m]
img = np.uint8(img*(1.0 - blend) + img1*blend)
print('done')
return img
示例7: skeletonize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def skeletonize(image_in):
'''Inputs and grayscale image and outputs a binary skeleton image'''
size = np.size(image_in)
skel = np.zeros(image_in.shape, np.uint8)
ret, image_edit = cv2.threshold(image_in, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
done = False
while not done:
eroded = cv2.erode(image_edit, element)
temp = cv2.dilate(eroded, element)
temp = cv2.subtract(image_edit, temp)
skel = cv2.bitwise_or(skel, temp)
image_edit = eroded.copy()
zeros = size - cv2.countNonZero(image_edit)
if zeros == size:
done = True
return skel
示例8: blend_non_transparent
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def blend_non_transparent(sprite, background_img):
gray_overlay = cv2.cvtColor(background_img, cv2.COLOR_BGR2GRAY)
overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1]
overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
overlay_mask = cv2.blur(overlay_mask, (3, 3))
background_mask = 255 - overlay_mask
overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR)
background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR)
sprite_part = (sprite * (1 / 255.0)) * (background_mask * (1 / 255.0))
overlay_part = (background_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0))
return np.uint8(cv2.addWeighted(sprite_part, 255.0, overlay_part, 255.0, 0.0))
示例9: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def __call__(self, sample):
alpha = sample['alpha']
# Adobe 1K
fg_width = np.random.randint(1, 30)
bg_width = np.random.randint(1, 30)
fg_mask = (alpha + 1e-5).astype(np.int).astype(np.uint8)
bg_mask = (1 - alpha + 1e-5).astype(np.int).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[fg_width])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[bg_width])
trimap = np.ones_like(alpha) * 128
trimap[fg_mask == 1] = 255
trimap[bg_mask == 1] = 0
sample['trimap'] = trimap
return sample
示例10: get_max_area_contour
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def get_max_area_contour(input_image):
# Get the contours.
expected_gray = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(expected_gray, (41, 41), 0)
thresh = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=2)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Find the biggest area
try:
if len(contours) > 0:
max_area_contour = max(contours, key=cv2.contourArea)
return max_area_contour
except ValueError as error:
print(error)
示例11: blend_non_transparent
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def blend_non_transparent(face_img, overlay_img):
# Let's find a mask covering all the non-black (foreground) pixels
# NB: We need to do this on grayscale version of the image
gray_overlay = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY)
overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1]
# Let's shrink and blur it a little to make the transitions smoother...
overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
overlay_mask = cv2.blur(overlay_mask, (3, 3))
# And the inverse mask, that covers all the black (background) pixels
background_mask = 255 - overlay_mask
# Turn the masks into three channel, so we can use them as weights
overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR)
background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR)
# Create a masked out face image, and masked out overlay
# We convert the images to floating point in range 0.0 - 1.0
face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0))
overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0))
# And finally just add them together, and rescale it back to an 8bit integer image
return np.uint8(cv2.addWeighted(face_part, 255.0, overlay_part, 255.0, 0.0))
示例12: check_if_top_is_unreliable
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def check_if_top_is_unreliable(mean_pred, albu_pred):
unreliable = np.zeros_like(albu_pred)
rows, cols = unreliable.shape
unreliable[(albu_pred > 30) & (albu_pred < 210)] = 255
unreliable = cv2.erode(unreliable, (55, 55), iterations=10)
unreliable = unreliable[0:rows // 2, ...]
biggest = biggest_contour(unreliable)
if biggest is None:
return None
if cv2.contourArea(biggest) > 40000:
x, y, w, h = cv2.boundingRect(biggest)
x, y, w, h = max(x - 50, 0), y - 50, w + 100, h + 100
mask = (albu_pred > 55).astype(np.uint8) * 255
c = biggest_contour(mask[y:y + h, x:x + w])
c = cv2.convexHull(c)
mask[y:y + h, x:x + w] = cv2.drawContours(mask[y:y + h, x:x + w], [c], -1, 255, -1)
result = (mean_pred > 127).astype(np.uint8) * 255
result[y:y + h, x:x + w] = mask[y:y + h, x:x + w]
return result
return None
示例13: detect_shirt
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def detect_shirt(self):
#self.dst=cv2.inRange(self.norm_rgb,np.array([self.lb,self.lg,self.lr],np.uint8),np.array([self.b,self.g,self.r],np.uint8))
self.dst=cv2.inRange(self.norm_rgb,np.array([20,20,20],np.uint8),np.array([255,110,80],np.uint8))
cv2.threshold(self.dst,0,255,cv2.THRESH_OTSU+cv2.THRESH_BINARY)
fg=cv2.erode(self.dst,None,iterations=2)
#cv2.imshow("fore",fg)
bg=cv2.dilate(self.dst,None,iterations=3)
_,bg=cv2.threshold(bg, 1,128,1)
#cv2.imshow("back",bg)
mark=cv2.add(fg,bg)
mark32=np.int32(mark)
cv2.watershed(self.norm_rgb,mark32)
self.m=cv2.convertScaleAbs(mark32)
_,self.m=cv2.threshold(self.m,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#cv2.imshow("final_tshirt",self.m)
cntr,h=cv2.findContours(self.m,cv2.cv.CV_RETR_EXTERNAL,cv2.cv.CV_CHAIN_APPROX_SIMPLE)
return self.m,cntr
示例14: process
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def process(im_name, bg_name):
im = cv.imread(fg_path + im_name)
a = cv.imread(a_path + im_name, 0)
h, w = im.shape[:2]
bg = cv.imread(bg_path + bg_name)
bh, bw = bg.shape[:2]
wratio = w / bw
hratio = h / bh
ratio = wratio if wratio > hratio else hratio
if ratio > 1:
bg = cv.resize(src=bg, dsize=(math.ceil(bw * ratio), math.ceil(bh * ratio)), interpolation=cv.INTER_CUBIC)
return composite4(im, bg, a, w, h)
# def gen_trimap(alpha):
# fg = np.array(np.equal(alpha, 255).astype(np.float32))
# # fg = cv.erode(fg, kernel, iterations=np.random.randint(1, 3))
# unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
# unknown = cv.dilate(unknown, kernel, iterations=np.random.randint(1, 20))
# trimap = fg * 255 + (unknown - fg) * 128
# trimap = np.clip(trimap, 0, 255.0)
# return trimap.astype(np.uint8)
示例15: Make_boundary
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import erode [as 别名]
def Make_boundary(self, label, k_size):
np_label = label.data.numpy().astype(np.uint8)
target_label = 255 * np_label * (np_label == 1).astype(np.uint8)
ignore_label = np_label * (np_label == self.ignore_idx).astype(np.uint8)
kernel = np.ones((k_size, k_size), np.uint8)
erosion = cv2.erode(target_label, kernel, iterations=1)
dilation = cv2.dilate(target_label, kernel, iterations=1)
boundary = dilation - erosion
edgemap = 255 * torch.ones_like(label)
edgemap[torch.from_numpy(boundary) > 0] = label[torch.from_numpy(boundary) > 0]
edgemap[torch.from_numpy(ignore_label)>0] = self.ignore_idx
return edgemap