本文整理汇总了Python中cv2.dilate方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.dilate方法的具体用法?Python cv2.dilate怎么用?Python cv2.dilate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.dilate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: prediction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def prediction(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.GaussianBlur(image, (21, 21), 0)
if self.avg is None:
self.avg = image.copy().astype(float)
cv2.accumulateWeighted(image, self.avg, 0.5)
frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg))
thresh = cv2.threshold(
frameDelta, DELTA_THRESH, 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
self.avg = image.copy().astype(float)
return cnts
示例2: movement
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def movement(mat_1,mat_2):
mat_1_gray = cv2.cvtColor(mat_1.copy(),cv2.COLOR_BGR2GRAY)
mat_1_gray = cv2.blur(mat_1_gray,(blur1,blur1))
_,mat_1_gray = cv2.threshold(mat_1_gray,100,255,0)
mat_2_gray = cv2.cvtColor(mat_2.copy(),cv2.COLOR_BGR2GRAY)
mat_2_gray = cv2.blur(mat_2_gray,(blur1,blur1))
_,mat_2_gray = cv2.threshold(mat_2_gray,100,255,0)
mat_2_gray = cv2.bitwise_xor(mat_1_gray,mat_2_gray)
mat_2_gray = cv2.blur(mat_2_gray,(blur2,blur2))
_,mat_2_gray = cv2.threshold(mat_2_gray,70,255,0)
mat_2_gray = cv2.erode(mat_2_gray,np.ones((erodeval,erodeval)))
mat_2_gray = cv2.dilate(mat_2_gray,np.ones((4,4)))
_, contours,__ = cv2.findContours(mat_2_gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:return True #If there were any movements
return False #if not
#Pedestrian Recognition Thread
示例3: find_squares
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
示例4: find_components
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def find_components(im, max_components=16):
"""Dilate the image until there are just a few connected components.
Returns contours for these components."""
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
dilation = dilate(im, kernel, 6)
count = 21
n = 0
sigma = 0.000
while count > max_components:
n += 1
sigma += 0.005
result = cv2.findContours(dilation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(result) == 3:
_, contours, hierarchy = result
elif len(result) == 2:
contours, hierarchy = result
possible = find_likely_rectangles(contours, sigma)
count = len(possible)
return (dilation, possible, n)
示例5: make_edge_smooth
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def make_edge_smooth(dataset_name, img_size) :
check_folder('./dataset/{}/{}'.format(dataset_name, 'trainB_smooth'))
file_list = glob('./dataset/{}/{}/*.*'.format(dataset_name, 'trainB'))
save_dir = './dataset/{}/trainB_smooth'.format(dataset_name)
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
gauss = cv2.getGaussianKernel(kernel_size, 0)
gauss = gauss * gauss.transpose(1, 0)
for f in tqdm(file_list) :
file_name = os.path.basename(f)
bgr_img = cv2.imread(f)
gray_img = cv2.imread(f, 0)
bgr_img = cv2.resize(bgr_img, (img_size, img_size))
pad_img = np.pad(bgr_img, ((2, 2), (2, 2), (0, 0)), mode='reflect')
gray_img = cv2.resize(gray_img, (img_size, img_size))
edges = cv2.Canny(gray_img, 100, 200)
dilation = cv2.dilate(edges, kernel)
gauss_img = np.copy(bgr_img)
idx = np.where(dilation != 0)
for i in range(np.sum(dilation != 0)):
gauss_img[idx[0][i], idx[1][i], 0] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 0], gauss))
gauss_img[idx[0][i], idx[1][i], 1] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 1], gauss))
gauss_img[idx[0][i], idx[1][i], 2] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 2], gauss))
cv2.imwrite(os.path.join(save_dir, file_name), gauss_img)
示例6: spline_transform_multi
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def spline_transform_multi(img, mask):
bimask=mask>0
M,N=np.where(bimask)
w=np.ptp(N)+1
h=np.ptp(M)+1
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
bound=cv2.dilate(bimask.astype('uint8'),kernel)-bimask
y,x=np.where(bound>0)
if x.size>4:
newxy=thin_plate_transform(x,y,w,h,mask.shape[:2],num_points=5)
new_img=cv2.remap(img,newxy,None,cv2.INTER_LINEAR)
new_msk=cv2.remap(mask,newxy,None,cv2.INTER_NEAREST)
elif x.size>0:
new_img=img
new_msk=mask
return new_img,new_msk
示例7: SeamlessClone_trimap
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def SeamlessClone_trimap(srcIm,dstIm,imMask,offX,offY):
dstIm=dstIm.copy()
bimsk=imMask>0
new_msk=np.zeros(dstIm.shape[:2],dtype='uint8')
new_msk[offY:offY+imMask.shape[0],offX:offX+imMask.shape[1]]=imMask
dstIm[new_msk>0]=srcIm[imMask>0]
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
bimsk=bimsk.astype('uint8')
bdmsk=cv2.dilate(bimsk,kernel)-cv2.erode(bimsk,kernel)
mask255=bdmsk>0
mask255=(mask255*255).astype('uint8')
offCenter=(int(offX+imMask.shape[1]/2),int(offY+imMask.shape[0]/2))
if np.any(bdmsk>0):
outputIm=cv2.seamlessClone(srcIm,dstIm,mask255,offCenter,cv2.MIXED_CLONE)
else:
outputIm=dstIm
#when one object have very few pixels, bdmsk will be totally zero, which will cause segmentation fault.
return outputIm,new_msk
示例8: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def __getitem__(self, idx):
'''
:param idx: Index of the image file
:return: returns the image and corresponding label file.
'''
image_name = self.imList[idx]
label_name = self.labelList[idx]
image = cv2.imread(image_name)
label = cv2.imread(label_name, 0)
label_bool = 255 * ((label > 200).astype(np.uint8))
if self.transform:
[image, label] = self.transform(image, label_bool)
if self.edge:
np_label = 255 * label.data.numpy().astype(np.uint8)
kernel = np.ones((self.kernel_size , self.kernel_size ), np.uint8)
erosion = cv2.erode(np_label, kernel, iterations=1)
dilation = cv2.dilate(np_label, kernel, iterations=1)
boundary = dilation - erosion
edgemap = 255 * torch.ones_like(label)
edgemap[torch.from_numpy(boundary) > 0] = label[torch.from_numpy(boundary) > 0]
return (image, label, edgemap)
else:
return (image, label)
示例9: process_images
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def process_images(self, clean, mask):
i, j, h, w = RandomResizedCrop.get_params(clean, scale=(0.5, 2.0), ratio=(3. / 4., 4. / 3.))
clean_img = resized_crop(clean, i, j, h, w, size=self.img_size, interpolation=Image.BICUBIC)
mask = resized_crop(mask, i, j, h, w, self.img_size, interpolation=Image.BICUBIC)
# get mask before further image augment
# mask = self.get_mask(raw_img, clean_img)
if self.add_random_masks:
mask = random_masks(mask.copy(), size=self.img_size[0], offset=10)
mask = np.where(np.array(mask) > brightness_difference * 255, np.uint8(255), np.uint8(0))
mask = cv2.dilate(mask, np.ones((10, 10), np.uint8), iterations=1)
mask = np.expand_dims(mask, -1)
mask_t = to_tensor(mask)
# mask_t = (mask_t > brightness_difference).float()
# mask_t, _ = torch.max(mask_t, dim=0, keepdim=True)
binary_mask = (1 - mask_t) # valid positions are 1; holes are 0
binary_mask = binary_mask.expand(3, -1, -1)
clean_img = self.transformer(clean_img)
corrupted_img = clean_img * binary_mask
return corrupted_img, binary_mask, clean_img
示例10: coherence_filter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
h, w = img.shape[:2]
for i in xrange(iter_n):
print(i)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3)
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
x, y = eigen[:,:,1,0], eigen[:,:,1,1]
gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
gvv = x*x*gxx + 2*x*y*gxy + y*y*gyy
m = gvv < 0
ero = cv2.erode(img, None)
dil = cv2.dilate(img, None)
img1 = ero
img1[m] = dil[m]
img = np.uint8(img*(1.0 - blend) + img1*blend)
print('done')
return img
示例11: skeletonize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def skeletonize(image_in):
'''Inputs and grayscale image and outputs a binary skeleton image'''
size = np.size(image_in)
skel = np.zeros(image_in.shape, np.uint8)
ret, image_edit = cv2.threshold(image_in, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
done = False
while not done:
eroded = cv2.erode(image_edit, element)
temp = cv2.dilate(eroded, element)
temp = cv2.subtract(image_edit, temp)
skel = cv2.bitwise_or(skel, temp)
image_edit = eroded.copy()
zeros = size - cv2.countNonZero(image_edit)
if zeros == size:
done = True
return skel
示例12: pre_process_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def pre_process_image(img, skip_dilate=False):
"""Uses a blurring function, adaptive thresholding and dilation to expose the main features of an image."""
# Gaussian blur with a kernal size (height, width) of 9.
# Note that kernal sizes must be positive and odd and the kernel must be square.
proc = cv2.GaussianBlur(img.copy(), (9, 9), 0)
# Adaptive threshold using 11 nearest neighbour pixels
proc = cv2.adaptiveThreshold(proc, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
# Invert colours, so gridlines have non-zero pixel values.
# Necessary to dilate the image, otherwise will look like erosion instead.
proc = cv2.bitwise_not(proc, proc)
if not skip_dilate:
# Dilate the image to increase the size of the grid lines.
kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]],np.uint8)
proc = cv2.dilate(proc, kernel)
return proc
示例13: generate_edge
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def generate_edge(label, edge_width=10, area_thrs=200):
label_list = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
edge = np.zeros_like(label, dtype=np.uint8)
for i in np.unique(label):
# have no instance
if i < 1000 or (i // 1000) not in label_list:
continue
# filter out small objects
mask = (label == i).astype(np.uint8)
if mask.sum() < area_thrs:
continue
rmin, rmax, cmin, cmax = _get_bbox(mask)
mask_edge = _generate_edge(mask[rmin:rmax+1, cmin:cmax+1])
edge[rmin:rmax+1, cmin:cmax+1][mask_edge > 0] = 255
# dilation on edge
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (edge_width, edge_width))
edge = cv2.dilate(edge, kernel)
return edge
示例14: find_components
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def find_components(edges, max_components=16):
"""Dilate the image until there are just a few connected components.
Returns contours for these components."""
# Perform increasingly aggressive dilation until there are just a few
# connected components.
count = 21
dilation = 5
n = 1
while count > 16:
n += 1
dilated_image = dilate(edges, N=3, iterations=n)
contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
count = len(contours)
#print dilation
#Image.fromarray(edges).show()
#Image.fromarray(255 * dilated_image).show()
return contours
示例15: findPiccircle
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import dilate [as 别名]
def findPiccircle(frame, color):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
color_dict = color_list.getColorList()
mask = cv2.inRange(hsv, color_dict[color][0], color_dict[color][1])
dilated = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)
## 需要修改minRadius以及maxRadius,用来限制识别圆的大小,排除其他的干扰
circles = cv2.HoughCircles(dilated, cv2.HOUGH_GRADIENT, 1, 1000, param1=15, param2=10, minRadius=15, maxRadius=50)
center = None
if circles is not None:
x, y, radius = circles[0][0]
center = (x, y)
cv2.circle(frame, center, radius, (0, 255, 0), 2)
cv2.circle(frame, center, 2, (0,255,0), -1, 8, 0 );
print('圆心:{}, {}'.format(x, y))
cv2.imshow('result', frame)
if center != None:
return center