本文整理汇总了Python中cv2.calibrateCamera方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.calibrateCamera方法的具体用法?Python cv2.calibrateCamera怎么用?Python cv2.calibrateCamera使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.calibrateCamera方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: calibrate_camera
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def calibrate_camera(filepaths, nx, ny):
# Compute camera matrix and distortion coefficients
# Get the calibration points
object_points, image_points, image_size = get_calibration_points(images, nx, ny)
# Compute camera calibration given object points and image points
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, image_size, None, None)
# Save the camera calibration result to disk (we won't worry about rvecs / tvecs)
cam_calib = {"cam_matrix": mtx,
"dist_coeffs": dist}
with open("cam_calib.p", "wb") as f:
pickle.dump(cam_calib, f)
return mtx, dist
# Run the calibration process
# Specify the filepaths to the calibration images
# The images are expected to contain only chessboard patterns and bright background
示例2: __calibrate_intrinsics
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def __calibrate_intrinsics(camera, image_points, object_points, flags, criteria):
"""
Calibrate intrinsics of the provided camera using provided image & object points & calibration flags & criteria.
@param camera: camera to calibrate
@param image_points: points in images taken with the camera that correspond to the 3d object_points.
@param object_points: 3d points on the object that appears in *each* of the images.
Usually, inner corners of a calibration board. Note: assumes *the same* object appears in all of the images.
@param flags: OpenCV camera calibration flags. For details, see OpenCV calib3d documentation, calibrate function.
@param criteria: OpenCV criteria.
@return: estimated object-space rotation & translation vectors of the camera (assuming object is static)
"""
# OpenCV prefers [width x height] as "Size" to [height x width]
frame_dims = (camera.intrinsics.resolution[1], camera.intrinsics.resolution[0])
start = time.time()
camera.intrinsics.error, camera.intrinsics.intrinsic_mat, camera.intrinsics.distortion_coeffs, \
rotation_vectors, translation_vectors = \
cv2.calibrateCamera(objectPoints=np.array([object_points]*len(image_points)), imagePoints=image_points,
imageSize=frame_dims, cameraMatrix=camera.intrinsics.intrinsic_mat,
distCoeffs=camera.intrinsics.distortion_coeffs,
flags=flags, criteria=criteria)
end = time.time()
camera.intrinsics.time = end - start
camera.intrinsics.timestamp = end
camera.intrinsics.calibration_image_count = len(image_points)
return rotation_vectors, translation_vectors
示例3: live_calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def live_calibrate(camera, pattern_shape, n_matches_needed):
""" Find calibration parameters as the user moves a checkerboard in front of the camera """
print("Looking for %s checkerboard" % (pattern_shape,))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
example_3d = np.zeros((pattern_shape[0] * pattern_shape[1], 3), np.float32)
example_3d[:, :2] = np.mgrid[0 : pattern_shape[1], 0 : pattern_shape[0]].T.reshape(-1, 2)
points_3d = []
points_2d = []
while len(points_3d) < n_matches_needed:
ret, frame = camera.cap.read()
assert ret
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findCirclesGrid(
gray_frame, pattern_shape, flags=cv2.CALIB_CB_ASYMMETRIC_GRID
)
cv2.imshow("camera", frame)
if ret:
points_3d.append(example_3d.copy())
points_2d.append(corners)
print("Found calibration %i of %i" % (len(points_3d), n_matches_needed))
drawn_frame = cv2.drawChessboardCorners(frame, pattern_shape, corners, ret)
cv2.imshow("calib", drawn_frame)
cv2.waitKey(10)
ret, camera_matrix, distortion_coefficients, _, _ = cv2.calibrateCamera(
points_3d, points_2d, gray_frame.shape[::-1], None, None
)
assert ret
return camera_matrix, distortion_coefficients
示例4: calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def calibrate(drawconer=False):
'''
read the calibration image and do the camera calibration
and output the result to a pickle file.
if drawconer is True, will draw the corner on the chessboard file and save it to another folder.
'''
# !!! IMPORTANT, set the nx, ny according the calibration chessboard pictures.
nx = 9
ny = 6
# prepare object points, like (0,0,0), (1,0,0), (2,0,0), ...(6,5,0)
objp = np.zeros((nx*ny,3), np.float32)
objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d pionts in image plane.
# Make a list of calibration images
images = glob.glob('chessboard_img/calibration*.jpg')
print("Reading the calibration file...")
# Step through the list and search for chessboard corners
for idx, fname in enumerate(images):
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
print("Searching corners on ", fname, "...")
ret, corners = cv2.findChessboardCorners(gray, (nx,ny), None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
if drawconer:
cv2.drawChessboardCorners(img, (nx,ny), corners, ret)
write_name = 'corners_found'+str(idx)+'.jpg'
cv2.imwrite(write_name, img)
cv2.imshow('img', img)
cv2.waitKey(500)
cv2.destroyAllWindows()
# Get image size
img_size = (img.shape[1],img.shape[0])
# Do camera calibration given object points and image points
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
print("Saving the parameter to file...>>camera_cal.p")
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
pickle_file = open("camera_cal.p", "wb")
pickle.dump(dist_pickle, pickle_file)
pickle_file.close()
示例5: stereo_calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def stereo_calibrate(self):
"""Calibrate camera and construct Homography."""
# init camera calibrations
rt, self.M1, self.d1, self.r1, self.t1 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_l, self.img_shape, None, None)
rt, self.M2, self.d2, self.r2, self.t2 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_r, self.img_shape, None, None)
# config
flags = 0
#flags |= cv2.CALIB_FIX_ASPECT_RATIO
flags |= cv2.CALIB_USE_INTRINSIC_GUESS
#flags |= cv2.CALIB_SAME_FOCAL_LENGTH
#flags |= cv2.CALIB_ZERO_TANGENT_DIST
flags |= cv2.CALIB_RATIONAL_MODEL
#flags |= cv2.CALIB_FIX_K1
#flags |= cv2.CALIB_FIX_K2
#flags |= cv2.CALIB_FIX_K3
#flags |= cv2.CALIB_FIX_K4
#flags |= cv2.CALIB_FIX_K5
#flags |= cv2.CALIB_FIX_K6
stereocalib_criteria = (cv2.TERM_CRITERIA_COUNT +
cv2.TERM_CRITERIA_EPS, 100, 1e-5)
# stereo calibration procedure
ret, self.M1, self.d1, self.M2, self.d2, R, T, E, F = cv2.stereoCalibrate(
self.objpoints, self.imgpoints_l, self.imgpoints_r,
self.M1, self.d1, self.M2, self.d2, self.img_shape,
criteria=stereocalib_criteria, flags=flags)
assert ret < 1.0, "[ERROR] Calibration RMS error < 1.0 (%i). Re-try image capture." % (ret)
print("[OK] Calibration successful w/ RMS error=" + str(ret))
# construct Homography
plane_depth = 40000000.0 # arbitrary plane depth
#TODO: Need to understand effect of plane_depth. Why does this improve some boards' cals?
n = np.array([[0.0], [0.0], [-1.0]])
d_inv = 1.0 / plane_depth
H = (R - d_inv * np.dot(T, n.transpose()))
self.H = np.dot(self.M2, np.dot(H, np.linalg.inv(self.M1)))
self.H /= self.H[2, 2]
# rectify Homography for right camera
disparity = (self.M1[0, 0] * T[0] / plane_depth)
self.H[0, 2] -= disparity
self.H = self.H.astype(np.float32)
print("Rectifying Homography...")
print(self.H)
示例6: calibrate_camera
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def calibrate_camera(nx, ny, basepath):
"""
:param nx: number of grids in x axis
:param ny: number of grids in y axis
:param basepath: path contains the calibration images
:return: write calibration file into basepath as calibration_pickle.p
"""
objp = np.zeros((nx*ny,3), np.float32)
objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob(path.join(basepath, 'calibration*.jpg'))
# Step through the list and search for chessboard corners
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (nx,ny),None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (nx,ny), corners, ret)
cv2.imshow('input image',img)
cv2.waitKey(500)
cv2.destroyAllWindows()
# calibrate the camera
img_size = (img.shape[1], img.shape[0])
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Save the camera calibration result for later use (we don't use rvecs / tvecs)
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
destnation = path.join(basepath,'calibration_pickle.p')
pickle.dump( dist_pickle, open( destnation, "wb" ) )
print("calibration data is written into: {}".format(destnation))
return mtx, dist
示例7: calibrate_camera
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def calibrate_camera(calib_images_dir, verbose=False):
"""
Calibrate the camera given a directory containing calibration chessboards.
:param calib_images_dir: directory containing chessboard frames
:param verbose: if True, draw and show chessboard corners
:return: calibration parameters
"""
assert path.exists(calib_images_dir), '"{}" must exist and contain calibration images.'.format(calib_images_dir)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6 * 9, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob(path.join(calib_images_dir, 'calibration*.jpg'))
# Step through the list and search for chessboard corners
for filename in images:
img = cv2.imread(filename)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
pattern_found, corners = cv2.findChessboardCorners(gray, (9, 6), None)
if pattern_found is True:
objpoints.append(objp)
imgpoints.append(corners)
if verbose:
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (9, 6), corners, pattern_found)
cv2.imshow('img',img)
cv2.waitKey(500)
if verbose:
cv2.destroyAllWindows()
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
return ret, mtx, dist, rvecs, tvecs
示例8: get_calibration_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def get_calibration_points(images, nx, ny):
'''
Generate two lists of calibration points from a set of calibration images
of chess boards to needed for `cv2.calibrateCamera()`.
It is recommended that `images` contain at least 20 images. All images
are expected to be of identical size and to contain the same, complete
chess board pattern.
Args:
images (array-like): A list of file names of the images to be
used for calibration.
nx (int): The number of horizontal inner corners (i.e. corners where two
white and two black tiles meet) of the chess board.
ny (int): The number of vertical inner corners (i.e. corners where two
white and two black tiles meet) of the chess board.
Returns:
object_points (list): The list of 3-D object points for calibration.
image_points (list): The list of 2-D image points for calibration.
'''
image_size = []
# Arrays to store object points and image points
# of all calibration images for `cv2.calibrateCamera()`.
object_points = [] # 3-D points in real world space
image_points = [] # 2-D points in image plane.
# All calibration images are expected to contain the same calibration pattern,
# so the object points are the same for all images.
# Format: (0,0,0), (1,0,0), (2,0,0), ...., (8,5,0)
# The third coordinate is always zero as the points lie in a plane.
objp = np.zeros((nx*ny,3), np.float32)
objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2)
# Step through the list and search for chess board corners
for i, fname in enumerate(images):
img = cv2.imread(fname)
size = (img.shape[1], img.shape[0])
if i == 0:
image_size = size
if size != image_size:
raise ValueError("Expected all images to have identical size, but found varying sizes.")
image_size = size
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
# If found, add object points, image points
if ret == True:
object_points.append(objp)
image_points.append(corners)
return object_points, image_points, image_size
示例9: getP
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def getP(self, dst):
"""
dst: 标记物关键点
return self.MTX,self.DIST,self.RVEC,self.TVEC:
反馈 内参、畸变系数,旋转向量,位移向量
"""
if self.SceneImage is None:
return None
corners = np.float32([dst[1], dst[0], dst[2], dst[3]])
gray = cv2.cvtColor(self.SceneImage, cv2.COLOR_BGR2GRAY)
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (1,0,0), (1,1,0)
objp = np.zeros((2*2,3), np.float32)
objp[:,:2] = np.mgrid[0:2,0:2].T.reshape(-1,2)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
if self.PTimes < self.PCount or self.PCount == 0:
# Arrays to store object points and image points from all the images.
objpoints = self.OBJPoints # 3d point in real world space
imgpoints = self.IMGPoints # 2d points in image plane.
if len(imgpoints) == 0 or np.sum(np.abs(imgpoints[-1] - corners2)) != 0:
objpoints.append(objp)
imgpoints.append(corners2)
# Find mtx, dist, rvecs, tvecs
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
if not ret:
self.PTimes += 1
return None
self.OBJPoints = objpoints
self.IMGPoints = imgpoints
self.MTX = mtx
self.DIST = dist
self.RVEC = rvecs[0]
self.TVEC = tvecs[0]
else:
# Find the rotation and translation vectors.
_, rvec, tvec, _= cv2.solvePnPRansac(objp, corners2, self.MTX, self.DIST)
self.RVEC = rvec
self.TVEC = tvec
self.PTimes += 1
return self.MTX,self.DIST,self.RVEC,self.TVEC
示例10: calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calibrateCamera [as 别名]
def calibrate(dirpath, prefix, image_format, square_size, width=9, height=6):
""" Apply camera calibration operation for images in the given directory path. """
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,6,0)
objp = np.zeros((height*width, 3), np.float32)
objp[:, :2] = np.mgrid[0:width, 0:height].T.reshape(-1, 2)
objp = objp * square_size # Create real world coords. Use your metric.
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
# Directory path correction. Remove the last character if it is '/'
if dirpath[-1:] == '/':
dirpath = dirpath[:-1]
# Get the images
images = glob.glob(dirpath+'/' + prefix + '*.' + image_format)
# Iterate through the pairs and find chessboard corners. Add them to arrays
# If openCV can't find the corners in an image, we discard the image.
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (width, height), None)
# If found, add object points, image points (after refining them)
if ret:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# Draw and display the corners
# Show the image to see if pattern is found ! imshow function.
img = cv2.drawChessboardCorners(img, (width, height), corners2, ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
return [ret, mtx, dist, rvecs, tvecs]