本文整理汇总了Python中cv2.calcBackProject方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.calcBackProject方法的具体用法?Python cv2.calcBackProject怎么用?Python cv2.calcBackProject使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.calcBackProject方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def run(self, frame):
"""Processes a single frame.
Args:
frame: The np.array image frame.
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv], [0, 1], self.roi_hist, [0, 180, 0, 255], 1)
_, self.box = cv2.CamShift(dst, self.box, self.term_crit)
(x, y, x2, y2) = self.glob_to_relative(
(self.box[0], self.box[1], self.box[0] + self.box[2],
self.box[1] + self.box[3]))
self.annotation.bbox.left = x
self.annotation.bbox.top = y
self.annotation.bbox.right = x2
self.annotation.bbox.bottom = y2
self.age = self.age + 1
self.degrade()
示例2: backprojection
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def backprojection(target, roihist):
'''图像预处理'''
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# Now convolute with circular disc
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
cv2.filter2D(dst,-1,disc,dst)
# threshold and binary AND
ret,binary = cv2.threshold(dst,80,255,0)
# 创建 核
kernel = np.ones((5,5), np.uint8)
iter_time = 1
# 闭运算
binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel,iterations=iter_time)
thresh = cv2.merge((binary,binary,binary))
target_filter = cv2.bitwise_and(target,thresh)
return binary, target_filter
示例3: _append_boxes_from_meanshift
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def _append_boxes_from_meanshift(self, frame, box_all):
"""Adds to the list all bounding boxes found with mean-shift tracking
Mean-shift tracking is used to track objects from frame to frame.
This information is combined with a saliency map to discard
false-positives and focus only on relevant objects that move.
:param frame: current RGB image frame
:box_all: append bounding boxes from tracking to this list
:returns: new list of all collected bounding boxes
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
for i in xrange(len(self.object_roi)):
roi_hist = copy.deepcopy(self.object_roi[i])
box_old = copy.deepcopy(self.object_box[i])
dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
ret, box_new = cv2.meanShift(dst, tuple(box_old), self.term_crit)
self.object_box[i] = copy.deepcopy(box_new)
# discard boxes that don't move
(xo, yo, wo, ho) = box_old
(xn, yn, wn, hn) = box_new
co = [xo + wo/2, yo + ho/2]
cn = [xn + wn/2, yn + hn/2]
if (co[0]-cn[0])**2 + (co[1]-cn[1])**2 >= self.min_shift2:
box_all.append(box_new)
return box_all
示例4: hand_threshold
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def hand_threshold(frame_in,hand_hist):
frame_in=cv2.medianBlur(frame_in,3)
hsv=cv2.cvtColor(frame_in,cv2.COLOR_BGR2HSV)
hsv[0:int(cap_region_y_end*hsv.shape[0]),0:int(cap_region_x_begin*hsv.shape[1])]=0 # Right half screen only
hsv[int(cap_region_y_end*hsv.shape[0]):hsv.shape[0],0:hsv.shape[1]]=0
back_projection = cv2.calcBackProject([hsv], [0,1],hand_hist, [00,180,0,256], 1)
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (morph_elem_size,morph_elem_size))
cv2.filter2D(back_projection, -1, disc, back_projection)
back_projection=cv2.GaussianBlur(back_projection,(gaussian_ksize,gaussian_ksize), gaussian_sigma)
back_projection=cv2.medianBlur(back_projection,median_ksize)
ret, thresh = cv2.threshold(back_projection, hsv_thresh_lower, 255, 0)
return thresh
# 3. Find hand contour
示例5: locate_object
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def locate_object(frame, object_hist):
# convert to HSV
hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# apply back projection to image using object_hist as
# the model histogram
object_segment = cv2.calcBackProject(
[hsv_frame], [0, 1], object_hist, [0, 180, 0, 256], 1)
# find the contours
img, contours, _ = cv2.findContours(
object_segment,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
flag = None
max_area = 0
# find the contour with the greatest area
for (i, c) in enumerate(contours):
area = cv2.contourArea(c)
if area > max_area:
max_area = area
flag = i
# get the rectangle
if flag is not None and max_area > 1000:
cnt = contours[flag]
coords = cv2.boundingRect(cnt)
return coords
return None
# compute the color histogram
开发者ID:PacktPublishing,项目名称:Hands-On-Machine-Learning-with-OpenCV-4,代码行数:38,代码来源:object_detection_using_color.py
示例6: get_hand_hist
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def get_hand_hist():
cam = cv2.VideoCapture(1)
if cam.read()[0]==False:
cam = cv2.VideoCapture(0)
x, y, w, h = 300, 100, 300, 300
flagPressedC, flagPressedS = False, False
imgCrop = None
while True:
img = cam.read()[1]
img = cv2.flip(img, 1)
img = cv2.resize(img, (640, 480))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
keypress = cv2.waitKey(1)
if keypress == ord('c'):
hsvCrop = cv2.cvtColor(imgCrop, cv2.COLOR_BGR2HSV)
flagPressedC = True
hist = cv2.calcHist([hsvCrop], [0, 1], None, [180, 256], [0, 180, 0, 256])
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
elif keypress == ord('s'):
flagPressedS = True
break
if flagPressedC:
dst = cv2.calcBackProject([hsv], [0, 1], hist, [0, 180, 0, 256], 1)
dst1 = dst.copy()
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))
cv2.filter2D(dst,-1,disc,dst)
blur = cv2.GaussianBlur(dst, (11,11), 0)
blur = cv2.medianBlur(blur, 15)
ret,thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
thresh = cv2.merge((thresh,thresh,thresh))
#cv2.imshow("res", res)
cv2.imshow("Thresh", thresh)
if not flagPressedS:
imgCrop = build_squares(img)
#cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0), 2)
cv2.imshow("Set hand histogram", img)
cam.release()
cv2.destroyAllWindows()
with open("hist", "wb") as f:
pickle.dump(hist, f)
示例7: get_img_contour_thresh
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def get_img_contour_thresh(img):
img = cv2.flip(img, 1)
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([imgHSV], [0, 1], hist, [0, 180, 0, 256], 1)
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))
cv2.filter2D(dst,-1,disc,dst)
blur = cv2.GaussianBlur(dst, (11,11), 0)
blur = cv2.medianBlur(blur, 15)
thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
thresh = cv2.merge((thresh,thresh,thresh))
thresh = cv2.cvtColor(thresh, cv2.COLOR_BGR2GRAY)
thresh = thresh[y:y+h, x:x+w]
contours = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[0]
return img, contours, thresh
示例8: filter_by_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def filter_by_color(hist, hsv):
prob = cv2.calcBackProject([hsv], [0], hist, [0, 180], 1)
return prob
示例9: hist_masking
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def hist_masking(frame, hist):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv], [0, 1], hist, [0, 180, 0, 256], 1)
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (31, 31))
cv2.filter2D(dst, -1, disc, dst)
ret, thresh = cv2.threshold(dst, 150, 255, cv2.THRESH_BINARY)
# thresh = cv2.dilate(thresh, None, iterations=5)
thresh = cv2.merge((thresh, thresh, thresh))
return cv2.bitwise_and(frame, thresh)
示例10: camshift_track
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def camshift_track(prev, box, termination):
hsv = cv2.cvtColor(prev,cv2.COLOR_BGR2HSV)
x,y,w,h = box
roi = prev[y:y+h, x:x+w]
hist = cv2.calcHist([roi], [0], None, [16], [0, 180])
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
backProj = cv2.calcBackProject([hsv], [0], hist, [0, 180], 1)
(r, box) = cv2.CamShift(backProj, tuple(box), termination)
return box
示例11: returnMask
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def returnMask(self, frame, morph_opening=True, blur=True, kernel_size=5, iterations=1):
"""Given an input frame in BGR return the black/white mask.
@param frame the original frame (color)
@param morph_opening it is a erosion followed by dilatation to remove noise
@param blur to smoth the image it is possible to apply Gaussian Blur
@param kernel_size is the kernel dimension used for morph and blur
"""
if(self.template_hsv is None): return None
#Convert the input framge from BGR -> HSV
frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
#Set the template histogram
template_hist = cv2.calcHist([self.template_hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
#Normalize the template histogram and apply backprojection
cv2.normalize(template_hist, template_hist, 0, 255, cv2.NORM_MINMAX)
frame_hsv = cv2.calcBackProject([frame_hsv], [0,1], template_hist, [0,180,0,256], 1)
#Get the kernel and apply a convolution
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
frame_hsv = cv2.filter2D(frame_hsv, -1, kernel)
#Applying the morph open operation (erosion followed by dilation)
if(morph_opening==True):
kernel = np.ones((kernel_size,kernel_size), np.uint8)
frame_hsv = cv2.morphologyEx(frame_hsv, cv2.MORPH_OPEN, kernel, iterations=iterations)
#Applying Gaussian Blur
if(blur==True):
frame_hsv = cv2.GaussianBlur(frame_hsv, (kernel_size,kernel_size), 0)
#Get the threshold
ret, frame_threshold = cv2.threshold(frame_hsv, 50, 255, 0)
#Merge the threshold matrices
return cv2.merge((frame_threshold,frame_threshold,frame_threshold))
示例12: run
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def run(self):
while True:
ret, self.frame = self.cam.read()
vis = self.frame.copy()
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
if self.selection:
x0, y0, x1, y1 = self.selection
self.track_window = (x0, y0, x1-x0, y1-y0)
hsv_roi = hsv[y0:y1, x0:x1]
mask_roi = mask[y0:y1, x0:x1]
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
self.hist = hist.reshape(-1)
self.show_hist()
vis_roi = vis[y0:y1, x0:x1]
cv2.bitwise_not(vis_roi, vis_roi)
vis[mask == 0] = 0
if self.tracking_state == 1:
self.selection = None
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
prob &= mask
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
if self.show_backproj:
vis[:] = prob[...,np.newaxis]
try: cv2.ellipse(vis, track_box, (0, 0, 255), 2)
except: print track_box
cv2.imshow('camshift', vis)
ch = 0xFF & cv2.waitKey(5)
if ch == 27:
break
if ch == ord('b'):
self.show_backproj = not self.show_backproj
cv2.destroyAllWindows()
示例13: run
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def run(self):
while True:
ret, self.frame = self.cam.read()
vis = self.frame.copy()
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
if self.selection:
x0, y0, x1, y1 = self.selection
hsv_roi = hsv[y0:y1, x0:x1]
mask_roi = mask[y0:y1, x0:x1]
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
self.hist = hist.reshape(-1)
self.show_hist()
vis_roi = vis[y0:y1, x0:x1]
cv2.bitwise_not(vis_roi, vis_roi)
vis[mask == 0] = 0
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
self.selection = None
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
prob &= mask
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
if self.show_backproj:
vis[:] = prob[...,np.newaxis]
try:
cv2.ellipse(vis, track_box, (0, 0, 255), 2)
except:
print(track_box)
cv2.imshow('camshift', vis)
ch = cv2.waitKey(5)
if ch == 27:
break
if ch == ord('b'):
self.show_backproj = not self.show_backproj
cv2.destroyAllWindows()
示例14: store_images
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def store_images(g_id):
total_pics = 1200
hist = get_hand_hist()
cam = cv2.VideoCapture(1)
if cam.read()[0]==False:
cam = cv2.VideoCapture(0)
x, y, w, h = 300, 100, 300, 300
create_folder("gestures/"+str(g_id))
pic_no = 0
flag_start_capturing = False
frames = 0
while True:
img = cam.read()[1]
img = cv2.flip(img, 1)
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([imgHSV], [0, 1], hist, [0, 180, 0, 256], 1)
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))
cv2.filter2D(dst,-1,disc,dst)
blur = cv2.GaussianBlur(dst, (11,11), 0)
blur = cv2.medianBlur(blur, 15)
thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
thresh = cv2.merge((thresh,thresh,thresh))
thresh = cv2.cvtColor(thresh, cv2.COLOR_BGR2GRAY)
thresh = thresh[y:y+h, x:x+w]
contours = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1]
if len(contours) > 0:
contour = max(contours, key = cv2.contourArea)
if cv2.contourArea(contour) > 10000 and frames > 50:
x1, y1, w1, h1 = cv2.boundingRect(contour)
pic_no += 1
save_img = thresh[y1:y1+h1, x1:x1+w1]
if w1 > h1:
save_img = cv2.copyMakeBorder(save_img, int((w1-h1)/2) , int((w1-h1)/2) , 0, 0, cv2.BORDER_CONSTANT, (0, 0, 0))
elif h1 > w1:
save_img = cv2.copyMakeBorder(save_img, 0, 0, int((h1-w1)/2) , int((h1-w1)/2) , cv2.BORDER_CONSTANT, (0, 0, 0))
save_img = cv2.resize(save_img, (image_x, image_y))
rand = random.randint(0, 10)
if rand % 2 == 0:
save_img = cv2.flip(save_img, 1)
cv2.putText(img, "Capturing...", (30, 60), cv2.FONT_HERSHEY_TRIPLEX, 2, (127, 255, 255))
cv2.imwrite("gestures/"+str(g_id)+"/"+str(pic_no)+".jpg", save_img)
cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0), 2)
cv2.putText(img, str(pic_no), (30, 400), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (127, 127, 255))
cv2.imshow("Capturing gesture", img)
cv2.imshow("thresh", thresh)
keypress = cv2.waitKey(1)
if keypress == ord('c'):
if flag_start_capturing == False:
flag_start_capturing = True
else:
flag_start_capturing = False
frames = 0
if flag_start_capturing == True:
frames += 1
if pic_no == total_pics:
break
示例15: start_tracking
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import calcBackProject [as 别名]
def start_tracking(self):
# Iterate until the user presses the Esc key
while True:
# Capture the frame from webcam
ret, self.frame = self.cap.read()
# Resize the input frame
self.frame = cv2.resize(self.frame, None, fx=self.scaling_factor, fy=self.scaling_factor, interpolation=cv2.INTER_AREA)
vis = self.frame.copy()
# Convert to HSV colorspace
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
# Create the mask based on predefined thresholds.
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
if self.selection:
x0, y0, x1, y1 = self.selection
self.track_window = (x0, y0, x1-x0, y1-y0)
hsv_roi = hsv[y0:y1, x0:x1]
mask_roi = mask[y0:y1, x0:x1]
# Compute the histogram
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
# Normalize and reshape the histogram
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
self.hist = hist.reshape(-1)
vis_roi = vis[y0:y1, x0:x1]
cv2.bitwise_not(vis_roi, vis_roi)
vis[mask == 0] = 0
if self.tracking_state == 1:
print('tracking')
self.selection = None
# Compute the histogram back projection
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
prob &= mask
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
# Apply CAMShift on 'prob'
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
# Draw an ellipse around the object
cv2.ellipse(vis, track_box, (0, 255, 0), 2)
cv2.imshow('Object Tracker', vis)
c = cv2.waitKey(delay=5)
if c == 27:
break
cv2.destroyAllWindows()