当前位置: 首页>>代码示例>>Python>>正文


Python cv2.adaptiveThreshold方法代码示例

本文整理汇总了Python中cv2.adaptiveThreshold方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.adaptiveThreshold方法的具体用法?Python cv2.adaptiveThreshold怎么用?Python cv2.adaptiveThreshold使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv2的用法示例。


在下文中一共展示了cv2.adaptiveThreshold方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pre_process_image

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def pre_process_image(img, skip_dilate=False):
	"""Uses a blurring function, adaptive thresholding and dilation to expose the main features of an image."""

	# Gaussian blur with a kernal size (height, width) of 9.
	# Note that kernal sizes must be positive and odd and the kernel must be square.
	proc = cv2.GaussianBlur(img.copy(), (9, 9), 0)

	# Adaptive threshold using 11 nearest neighbour pixels
	proc = cv2.adaptiveThreshold(proc, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

	# Invert colours, so gridlines have non-zero pixel values.
	# Necessary to dilate the image, otherwise will look like erosion instead.
	proc = cv2.bitwise_not(proc, proc)

	if not skip_dilate:
		# Dilate the image to increase the size of the grid lines.
		kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]],np.uint8)
		proc = cv2.dilate(proc, kernel)

	return proc 
开发者ID:aakashjhawar,项目名称:SolveSudoku,代码行数:22,代码来源:SudokuExtractor.py

示例2: processImageForNeuralNet

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def processImageForNeuralNet(arg1, image=False):
	""" 
	Receives as parameter arg1 the path of the image to be converted or the image already captured with
	cv2 (in that case, pass image=True as a parameter). The return of this function (x) should be passed as
	input to a Network object by network.feedforward(x)
	"""
	SIDE_SIZE = 10
	TOTAL_SIZE = 100
	img = arg1
	if(not image):
		img = cv2.imread(arg1,0)
	img = cv2.resize(img,(SIDE_SIZE,SIDE_SIZE))
	img = cv2.adaptiveThreshold(img,1,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
	
	img = np.reshape(img, (TOTAL_SIZE, 1))
	return np.array(img, dtype='f') 
开发者ID:dalmia,项目名称:WannaPark,代码行数:18,代码来源:main.py

示例3: normalize

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def normalize(im):
    """Converts `im` to black and white.

    Applying a threshold to a grayscale image will make every pixel either
    fully black or fully white. Before doing so, a common technique is to
    get rid of noise (or super high frequency color change) by blurring the
    grayscale image with a Gaussian filter."""
    im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

    # Filter the grayscale image with a 3x3 kernel
    blurred = cv2.GaussianBlur(im_gray, (3, 3), 0)

    # Applies a Gaussian adaptive thresholding. In practice, adaptive thresholding
    # seems to work better than appling a single, global threshold to the image.
    # This is particularly important if there could be shadows or non-uniform
    # lighting on the answer sheet. In those scenarios, using a global thresholding
    # technique might yield paricularly bad results.
    # The choice of the parameters blockSize = 77 and C = 10 is as much as an art
    # as a science and domain-dependand.
    # In practice, you might want to try different  values for your specific answer
    # sheet.
    return cv2.adaptiveThreshold(
        blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 77, 10) 
开发者ID:rbaron,项目名称:omr,代码行数:25,代码来源:omr.py

示例4: getSignature

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def getSignature(img):
    imgSize = np.shape(img)

    gImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Adaptive Thresholding requires the blocksize to be odd and bigger than 1
    blockSize = 1 / 8 * imgSize[0] / 2 * 2 + 1
    if blockSize <= 1:
        blockSize = imgSize[0] / 2 * 2 + 1
    const = 10

    mask = cv2.adaptiveThreshold(gImg, maxValue = 255, adaptiveMethod = cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType = cv2.THRESH_BINARY, blockSize = blockSize, C = const)
    rmask = cv2.bitwise_not(mask)

    return (cv2.bitwise_and(img, img, mask=rmask), rmask)

# First Prompt 
开发者ID:vzat,项目名称:signature_extractor,代码行数:19,代码来源:masterForgery.py

示例5: clean_plate

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def clean_plate(self, plate):
        gray = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
        thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
        _, contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

        if contours:
            areas = [cv2.contourArea(c) for c in contours]
            max_index = np.argmax(areas) # index of the largest contour in the area array
            
            max_cnt = contours[max_index]
            max_cntArea = areas[max_index]
            x,y,w,h = cv2.boundingRect(max_cnt)
            rect = cv2.minAreaRect(max_cnt)
            rotatedPlate = self.crop_rotated_contour(plate, rect)
            if not self.ratioCheck(max_cntArea, rotatedPlate.shape[1], rotatedPlate.shape[0]):
                return plate, False, None
            return rotatedPlate, True, [x, y, w, h]
        else:
            return plate, False, None 
开发者ID:longphungtuan94,项目名称:ALPR_System,代码行数:21,代码来源:class_PlateDetection.py

示例6: read_file

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def read_file(fname):
    image = cv2.imread(fname,0)


    image = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
    # cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    # cv2.imshow('image',image)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    # image = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
    # cv2.imwrite("/home/ggdhines/temp.jpg",image)
    # assert False


    # _,image = cv2.threshold(image,200,255,cv2.THRESH_BINARY)

    # image = 255 - image
    # image = image > 0
    image = image.astype(np.float)

    return image 
开发者ID:zooniverse,项目名称:aggregation,代码行数:24,代码来源:temp.py

示例7: adaptiveThreshold

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def adaptiveThreshold(plates):
    for i, plate in enumerate(plates):
        img = cv2.imread(plate)

        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        cv2.imshow('gray', gray)

        ret, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY)
        # cv2.imshow('thresh', thresh)

        threshMean = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 10)
        # cv2.imshow('threshMean', threshMean)

        threshGauss = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 51, 27)
        cv2.imshow('threshGauss', threshGauss)
        cv2.imwrite("processed\\plate{}.png".format(i), threshGauss)

        cv2.waitKey(0) 
开发者ID:Link009,项目名称:LicensePlates-OCR,代码行数:20,代码来源:platesOCR.py

示例8: locate_text_area

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def locate_text_area(pdf_image_row_block):
    """
    locate the text area of the image row block
    :param pdf_image_row_block: color pdf image block
    :return:
    """
    gray_image = cv2.cvtColor(pdf_image_row_block, cv2.COLOR_BGR2GRAY)
    binarized_image = cv2.adaptiveThreshold(
        src=gray_image,
        maxValue=255,
        adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
        thresholdType=cv2.THRESH_BINARY,
        blockSize=11,
        C=2
    )

    # sum along the col axis
    col_sum = np.sum(binarized_image, axis=0)
    idx_col_sum = np.argwhere(col_sum < col_sum.max())[:, 0]

    start_col = idx_col_sum[0] if idx_col_sum[0] > 0 else 0
    end_col = idx_col_sum[-1]
    end_col = end_col if end_col < pdf_image_row_block.shape[1] else pdf_image_row_block.shape[1] - 1

    return pdf_image_row_block[:, start_col:end_col, :] 
开发者ID:MaybeShewill-CV,项目名称:CRNN_Tensorflow,代码行数:27,代码来源:recongnize_chinese_pdf.py

示例9: _call_threshold

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def _call_threshold(gray_img, threshold, max_value, threshold_method, method_name):
    # Threshold the image
    ret, bin_img = cv2.threshold(gray_img, threshold, max_value, threshold_method)

    if bin_img.dtype != 'uint16':
        bin_img = np.uint8(bin_img)

    # Print or plot the binary image if debug is on
    if params.debug == 'print':
        print_image(bin_img, os.path.join(params.debug_outdir,
                                          str(params.device) + method_name + str(threshold) + '.png'))
    elif params.debug == 'plot':
        plot_image(bin_img, cmap='gray')

    return bin_img


# Internal method for calling the OpenCV adaptiveThreshold function to reduce code duplication 
开发者ID:danforthcenter,项目名称:plantcv,代码行数:20,代码来源:threshold_methods.py

示例10: get_name

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def get_name(img):
        #    cv2.imshow("method3", img)
        #    cv2.waitKey()
        print('name')
        _, _, red = cv2.split(img) #split 会自动将UMat转换回Mat
        red = cv2.UMat(red)
        red = hist_equal(red)
        red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 151, 50)
        #    red = cv2.medianBlur(red, 3)
        red = img_resize(red, 150)
        img = img_resize(img, 150)
        # showimg(red)
        # cv2.imwrite('name.png', red)
        #    img2 = Image.open('address.png')
        # img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
        #return get_result_vary_length(red, 'chi_sim', img, '-psm 7')
        return get_result_vary_length(red, 'chi_sim', img, '--psm 7')
        # return punc_filter(pytesseract.image_to_string(img, lang='chi_sim', config='-psm 13').replace(" ","")) 
开发者ID:Raymondhhh90,项目名称:idcardocr,代码行数:20,代码来源:idcardocr.py

示例11: cartoonise

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def cartoonise(self, img_rgb, num_down, num_bilateral, medianBlur, D, sigmaColor, sigmaSpace):
        # 用高斯金字塔降低取样
        img_color = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
        for _ in range(num_down):
            img_color = cv2.pyrDown(img_color)
        # 重复使用小的双边滤波代替一个大的滤波
        for _ in range(num_bilateral):
            img_color = cv2.bilateralFilter(img_color, d=D, sigmaColor=sigmaColor, sigmaSpace=sigmaSpace)
        # 升采样图片到原始大小
        for _ in range(num_down):
            img_color = cv2.pyrUp(img_color)
        if not self.Save_Edge:
            img_cartoon = img_color
        else:
            img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
            img_blur = cv2.medianBlur(img_gray, medianBlur)
            img_edge = cv2.adaptiveThreshold(img_blur, 255,
                                             cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                             cv2.THRESH_BINARY,
                                             blockSize=self.Adaptive_Threshold_Block_Size,
                                             C=self.C)
            img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
            img_edge = cv2.resize(img_edge, img_color.shape[:2][::-1])
            img_cartoon = cv2.bitwise_and(img_color, img_edge)
        return cv2.cvtColor(img_cartoon, cv2.COLOR_RGB2BGR) 
开发者ID:MashiMaroLjc,项目名称:rabbitVE,代码行数:27,代码来源:Cartoonlization.py

示例12: processFile

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def processFile(self, img, debug=False):
        """
        Converts input image to grayscale & applies adaptive thresholding.
        """
        img = cv2.GaussianBlur(img,(5,5),0)
        # Convert to HSV
        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        # Convert to grayscale
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        # HSV Thresholding
        res,hsvThresh = cv2.threshold(hsv[:,:,0], 25, 250, cv2.THRESH_BINARY_INV)
        # Show adaptively thresholded image
        adaptiveThresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
        # Show both thresholded images
        # cv2.imshow("HSV Thresholded",hsvThresh)

        if debug:
            cv2.imshow("Adaptive Thresholding", adaptiveThresh)

        return img, adaptiveThresh 
开发者ID:nebbles,项目名称:DE3-ROB1-CHESS,代码行数:22,代码来源:mainDetect.py

示例13: _get_image_segments

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def _get_image_segments(image, kernel, block_size, c):
    binarized_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                            cv2.THRESH_BINARY_INV, block_size, c)

    labeled, nr_objects = ndimage.label(binarized_image, structure=kernel)
    slices = ndimage.find_objects(labeled)

    image_segments = {}
    for idx, slice_ in enumerate(slices):
        offset = instantiators['point'](slice_[1].start, slice_[0].start)
        sliced_image = image[slice_]
        boolean_array = labeled[slice_] == (idx+1)
        segmented_image = 255- (255-sliced_image) * boolean_array
        pixels = set(instantiators['point'](x, y) for x, y in np.transpose(np.nonzero(np.transpose(boolean_array))))
        binarized_segmented_image = cv2.adaptiveThreshold(segmented_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                                          cv2.THRESH_BINARY_INV, block_size, c)

        image_segment = ImageSegment(segmented_image, sliced_image, binarized_segmented_image, pixels, offset, idx)
        image_segments[idx] = image_segment

    return image_segments 
开发者ID:uwnlp,项目名称:geosolver,代码行数:23,代码来源:parse_image_segments.py

示例14: PrepareImage

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def PrepareImage(image):
  """Converts color image to black and white"""
  # work on gray scale
  bw = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

  # remove noise, preserve edges
  bw = cv2.bilateralFilter(bw, 9, 75, 75)

  # binary threshold
  bw = cv2.adaptiveThreshold(bw, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                             cv2.THRESH_BINARY, 11, 2)
  return bw 
开发者ID:cfircohen,项目名称:airport,代码行数:14,代码来源:solver.py

示例15: gradient_and_binary

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import adaptiveThreshold [as 别名]
def gradient_and_binary(img_blurred, image_name='1.jpg', save_path='./'):  # 将灰度图二值化,后面两个参数调试用
    """
    求取梯度,二值化
    :param img_blurred: 滤波后的图片
    :param image_name: 图片名,测试用
    :param save_path: 保存路径,测试用
    :return:  二值化后的图片
    """
    gradX = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=1, dy=0)
    gradY = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=0, dy=1)
    img_gradient = cv2.subtract(gradX, gradY)
    img_gradient = cv2.convertScaleAbs(img_gradient)  # sobel算子,计算梯度, 也可以用canny算子替代

    # 这里改进成自适应阈值,貌似没用
    img_thresh = cv2.adaptiveThreshold(img_gradient, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, -3)
    # cv2.imwrite(os.path.join(save_path, img_name + '_binary.jpg'), img_thresh)  # 二值化 阈值未调整好

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    img_closed = cv2.morphologyEx(img_thresh, cv2.MORPH_CLOSE, kernel)
    img_closed = cv2.morphologyEx(img_closed, cv2.MORPH_OPEN, kernel)
    img_closed = cv2.erode(img_closed, None, iterations=9)
    img_closed = cv2.dilate(img_closed, None, iterations=9)  # 腐蚀膨胀
    # 这里调整了kernel大小(减小),腐蚀膨胀次数后(增大),出错的概率大幅减小

    return img_closed 
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:27,代码来源:cut_part.py


注:本文中的cv2.adaptiveThreshold方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。