本文整理汇总了Python中cv2.absdiff方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.absdiff方法的具体用法?Python cv2.absdiff怎么用?Python cv2.absdiff使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.absdiff方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: segment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
#-----------------
# MAIN FUNCTION
#-----------------
示例2: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def main():
capture = cv2.VideoCapture(0)
_, image = capture.read()
previous = image.copy()
while (cv2.waitKey(1) < 0):
_, image = capture.read()
diff = cv2.absdiff(image, previous)
#image = cv2.flip(image, 3)
#image = cv2.norm(image)
_, diff = cv2.threshold(diff, 32, 0, cv2.THRESH_TOZERO)
_, diff = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY)
diff = cv2.medianBlur(diff, 5)
cv2.imshow('video', diff)
previous = image.copy()
capture.release()
cv2.destroyAllWindows()
示例3: prediction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def prediction(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.GaussianBlur(image, (21, 21), 0)
if self.avg is None:
self.avg = image.copy().astype(float)
cv2.accumulateWeighted(image, self.avg, 0.5)
frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg))
thresh = cv2.threshold(
frameDelta, DELTA_THRESH, 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
self.avg = image.copy().astype(float)
return cnts
示例4: diff_frames
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def diff_frames(self,previous_frame,image):
'''
diff value for two value,
determin if to excute the detection
:param previous_frame: RGB array
:param image: RGB array
:return: True or False
'''
if previous_frame is None:
return True
else:
_diff = cv2.absdiff(previous_frame, image)
diff=np.sum(_diff)/previous_frame.shape[0]/previous_frame.shape[1]/3.
if diff>self.diff_thres:
return True
else:
return False
示例5: diff_rect
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def diff_rect(img1, img2, pos=None):
"""find counters include pos in differences between img1 & img2 (cv2 images)"""
diff = cv2.absdiff(img1, img2)
diff = cv2.GaussianBlur(diff, (3, 3), 0)
edges = cv2.Canny(diff, 100, 200)
_, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
if not contours:
return None
contours.sort(key=lambda c: len(c))
# no pos provide, just return the largest different area rect
if pos is None:
cnt = contours[-1]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
return (x0, y0, x1, y1)
# else the rect should contain the pos
x, y = pos
for i in range(len(contours)):
cnt = contours[-1-i]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
if x0 <= x <= x1 and y0 <= y <= y1:
return (x0, y0, x1, y1)
示例6: get_match_confidence
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def get_match_confidence(img1, img2, mask=None):
if img1.shape != img2.shape:
return False
## first try, using absdiff
# diff = cv2.absdiff(img1, img2)
# h, w, d = diff.shape
# total = h*w*d
# num = (diff<20).sum()
# print 'is_match', total, num
# return num > total*0.90
if mask is not None:
img1 = img1.copy()
img1[mask!=0] = 0
img2 = img2.copy()
img2[mask!=0] = 0
## using match
match = cv2.matchTemplate(img1, img2, cv2.TM_CCOEFF_NORMED)
_, confidence, _, _ = cv2.minMaxLoc(match)
# print confidence
return confidence
示例7: segment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
#--------------------------------------------------------------
# To count the number of fingers in the segmented hand region
#--------------------------------------------------------------
示例8: matchAB
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def matchAB(fileA, fileB):
# 读取图像数据
imgA = cv2.imread(fileA)
imgB = cv2.imread(fileB)
# 转换成灰色
grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)
# 获取图片A的大小
height, width = grayA.shape
# 取局部图像,寻找匹配位置
result_window = np.zeros((height, width), dtype=imgA.dtype)
for start_y in range(0, height-100, 10):
for start_x in range(0, width-100, 10):
window = grayA[start_y:start_y+100, start_x:start_x+100]
match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED)
_, _, _, max_loc = cv2.minMaxLoc(match)
matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100]
result = cv2.absdiff(window, matched_window)
result_window[start_y:start_y+100, start_x:start_x+100] = result
plt.imshow(result_window)
plt.show()
示例9: segment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff,
threshold,
255,
cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(cnts, _) = cv2.findContours(thresholded.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
开发者ID:SparshaSaha,项目名称:Hand-Gesture-Recognition-Using-Background-Elllimination-and-Convolution-Neural-Network,代码行数:25,代码来源:ContinuousGesturePredictor.py
示例10: segment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff,
threshold,
255,
cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(cnts, _) = cv2.findContours(thresholded.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
开发者ID:SparshaSaha,项目名称:Hand-Gesture-Recognition-Using-Background-Elllimination-and-Convolution-Neural-Network,代码行数:25,代码来源:PalmTracker.py
示例11: background_subtraction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def background_subtraction(previous_frame, frame_resized_grayscale, min_area):
"""
This function returns 1 for the frames in which the area
after subtraction with previous frame is greater than minimum area
defined.
Thus expensive computation of human detection face detection
and face recognition is not done on all the frames.
Only the frames undergoing significant amount of change (which is controlled min_area)
are processed for detection and recognition.
"""
frameDelta = cv2.absdiff(previous_frame, frame_resized_grayscale)
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
im2, cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
temp = 0
for c in cnts:
# if the contour is too small, ignore it
if cv2.contourArea(c) > min_area:
temp = 1
return temp
示例12: motion1
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def motion1(new_frame, base):
motion = cv2.absdiff(base, new_frame)
gray = cv2.cvtColor(motion, cv2.COLOR_BGR2GRAY)
cv2.imshow('motion', gray)
ret, motion_mask = cv2.threshold(gray, 25, 255, cv2.THRESH_BINARY_INV)
blendsize = (3,3)
kernel = np.ones(blendsize,'uint8')
motion_mask = cv2.erode(motion_mask, kernel)
# lots
motion_mask /= 1.1429
motion_mask += 16
# medium
#motion_mask /= 1.333
#motion_mask += 32
# minimal
#motion_mask /= 2
#motion_mask += 64
cv2.imshow('motion1', motion_mask)
return motion_mask
示例13: motion3
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def motion3(frame, counter):
global last_frame
global static_mask
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if last_frame is None:
pass
else:
diff = cv2.absdiff(gray, last_frame)
cv2.imshow('motion3', diff)
if static_mask is None:
static_mask = np.float32(diff)
else:
if counter > 1000:
c = float(1000)
else:
c = float(counter)
f = float(c - 1) / c
static_mask = f*static_mask + (1.0 - f)*np.float32(diff)
mask_uint8 = np.uint8(static_mask)
cv2.imshow('mask3', mask_uint8)
ret, newmask = cv2.threshold(mask_uint8, 2, 255, cv2.THRESH_BINARY)
cv2.imshow('newmask', newmask)
last_frame = gray
# average of frames (the stationary stuff should be the sharpest)
示例14: FMCenterSurroundDiff
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def FMCenterSurroundDiff(self, GaussianMaps):
dst = list()
for s in range(2, 5):
now_size = GaussianMaps[s].shape
now_size = (now_size[1], now_size[0]) # (width, height)
tmp = cv2.resize(GaussianMaps[s + 3], now_size, interpolation=cv2.INTER_LINEAR)
nowdst = cv2.absdiff(GaussianMaps[s], tmp)
dst.append(nowdst)
tmp = cv2.resize(GaussianMaps[s + 4], now_size, interpolation=cv2.INTER_LINEAR)
nowdst = cv2.absdiff(GaussianMaps[s], tmp)
dst.append(nowdst)
return dst
# Constructing a Gaussian pyramid + taking center-surround differences
示例15: motionDetected
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import absdiff [as 别名]
def motionDetected(self, new_frame):
frame = self.preprocessInputFrame(new_frame)
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
gray = cv.GaussianBlur(gray, (21, 21), 0)
if self.prevFrame is None:
self.prevFrame = gray
return False
frameDiff = cv.absdiff(gray, self.prevFrame)
# kernel = np.ones((5, 5), np.uint8)
opening = cv.morphologyEx(frameDiff, cv.MORPH_OPEN, None) # noqa
closing = cv.morphologyEx(frameDiff, cv.MORPH_CLOSE, None) # noqa
ret1, th1 = cv.threshold(frameDiff, 10, 255, cv.THRESH_BINARY)
height = np.size(th1, 0)
width = np.size(th1, 1)
nb = cv.countNonZero(th1)
avg = (nb * 100) / (height * width) # Calculate the average of black pixel in the image
self.prevFrame = gray
# cv.DrawContours(currentframe, self.currentcontours, (0, 0, 255), (0, 255, 0), 1, 2, cv.CV_FILLED)
# cv.imshow("frame", current_frame)
ret = avg > self.threshold # If over the ceiling trigger the alarm
if ret:
self.updateMotionDetectionDts()
return ret