当前位置: 首页>>代码示例>>Python>>正文


Python cv2.Sobel方法代码示例

本文整理汇总了Python中cv2.Sobel方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.Sobel方法的具体用法?Python cv2.Sobel怎么用?Python cv2.Sobel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv2的用法示例。


在下文中一共展示了cv2.Sobel方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: preprocess_hog

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def preprocess_hog(digits):
	samples = []
	for img in digits:
		gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
		gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
		mag, ang = cv2.cartToPolar(gx, gy)
		bin_n = 16
		bin = np.int32(bin_n*ang/(2*np.pi))
		bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
		mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
		hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
		hist = np.hstack(hists)
		
		# transform to Hellinger kernel
		eps = 1e-7
		hist /= hist.sum() + eps
		hist = np.sqrt(hist)
		hist /= norm(hist) + eps
		
		samples.append(hist)
	return np.float32(samples)
#不能保证包括所有省份 
开发者ID:wzh191920,项目名称:License-Plate-Recognition,代码行数:24,代码来源:predict.py

示例2: color_grid_thresh

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def color_grid_thresh(img, s_thresh=(170,255), sx_thresh=(20, 100)):
	img = np.copy(img)
	# Convert to HLS color space and separate the V channel
	hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
	l_channel = hls[:,:,1]
	s_channel = hls[:,:,2]
	# Sobel x
	sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x
	abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines
	scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))

	# Threshold x gradient
	sxbinary = np.zeros_like(scaled_sobel)
	sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1

	# Threshold color channel
	s_binary = np.zeros_like(s_channel)
	s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1

	# combine the two binary
	binary = sxbinary | s_binary

	# Stack each channel (for visual check the pixal sourse)
	# color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary,s_binary)) * 255
	return binary 
开发者ID:ChengZhongShen,项目名称:Advanced_Lane_Lines,代码行数:27,代码来源:image_process.py

示例3: preprocess_hog

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def preprocess_hog(digits):
    samples = []
    for img in digits:
        gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
        gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
        mag, ang = cv2.cartToPolar(gx, gy)
        bin_n = 16
        bin = np.int32(bin_n*ang/(2*np.pi))
        bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
        mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
        hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
        hist = np.hstack(hists)

        # transform to Hellinger kernel
        eps = 1e-7
        hist /= hist.sum() + eps
        hist = np.sqrt(hist)
        hist /= norm(hist) + eps

        samples.append(hist)
    return np.float32(samples) 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:23,代码来源:digits.py

示例4: coherence_filter

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
    h, w = img.shape[:2]

    for i in xrange(iter_n):
        print(i)

        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3)
        eigen = eigen.reshape(h, w, 3, 2)  # [[e1, e2], v1, v2]
        x, y = eigen[:,:,1,0], eigen[:,:,1,1]

        gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
        gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
        gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
        gvv = x*x*gxx + 2*x*y*gxy + y*y*gyy
        m = gvv < 0

        ero = cv2.erode(img, None)
        dil = cv2.dilate(img, None)
        img1 = ero
        img1[m] = dil[m]
        img = np.uint8(img*(1.0 - blend) + img1*blend)
    print('done')
    return img 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:26,代码来源:coherence.py

示例5: sobelOperT

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def sobelOperT(self, img, blursize, morphW, morphH):
        '''
            No different with sobelOper ? 
        '''
        blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT)

        if len(blur.shape) == 3:
            gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
        else:
            gray = blur

        x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3)
        absX = cv2.convertScaleAbs(x)
        grad = cv2.addWeighted(absX, 1, 0, 0, 0)

        _, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)

        element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH))
        threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element)

        return threshold 
开发者ID:SunskyF,项目名称:EasyPR-python,代码行数:23,代码来源:plate_locate.py

示例6: sobel

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def sobel(filepathname):
    v = cv2.imread(filepathname)
    s = cv2.cvtColor(v,cv2.COLOR_BGR2GRAY)
    x, y = cv2.Sobel(s,cv2.CV_16S,1,0), cv2.Sobel(s,cv2.CV_16S,0,1)
    s = cv2.convertScaleAbs(cv2.subtract(x,y))
    s = cv2.blur(s,(9,9))
    cv2.imshow('nier',s)
    return s

    # ret, binary = cv2.threshold(s,40,255,cv2.THRESH_BINARY)
    # contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    # for c in contours:
    #     x,y,w,h = cv2.boundingRect(c)
    #     if w>5 and h>10:
    #         cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1)
    # cv2.imshow('nier2',v)

    # cv2.waitKey()
    # cv2.destroyAllWindows() 
开发者ID:cilame,项目名称:vrequest,代码行数:21,代码来源:pycv2.py

示例7: _create_derivative

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def _create_derivative(cls, filepath):
        img = cv2.imread(filepath,0)
        edges = cv2.Canny(img, 175, 320, apertureSize=3)
        # Create gradient map using Sobel
        sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=-1)
        sobely64f = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=-1)

        theta = np.arctan2(sobely64f, sobelx64f)
        if diagnostics:
            cv2.imwrite('edges.jpg',edges)
            cv2.imwrite('sobelx64f.jpg', np.absolute(sobelx64f))
            cv2.imwrite('sobely64f.jpg', np.absolute(sobely64f))
            # amplify theta for visual inspection
            theta_visible = (theta + np.pi)*255/(2*np.pi)
            cv2.imwrite('theta.jpg', theta_visible)
        return (edges, sobelx64f, sobely64f, theta) 
开发者ID:mypetyak,项目名称:StrokeWidthTransform,代码行数:18,代码来源:swt.py

示例8: verticalEdgeDetection

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def verticalEdgeDetection(image):
    image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0)
    # image = auto_canny(image_sobel)

    # img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT
    # canny_image  = auto_canny(image)
    flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY)
    print(flag)
    flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY)
    # thres = simpleThres(image_sobel)
    kernal = np.ones(shape=(3,15))
    thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal)
    return thres


#确定粗略的左右边界 
开发者ID:fanghon,项目名称:lpr,代码行数:18,代码来源:pipline.py

示例9: gradients

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def gradients(mask, direction='x'):
  '''
    Get gradients using sobel operator
  '''
  mask = cv2.GaussianBlur(mask, (5, 5), 0)

  if direction == 'x':
    # grad x
    sobel = cv2.Sobel(mask, cv2.CV_64F, 1, 0, ksize=7)
  elif direction == 'y':
    # grad y
    sobel = cv2.Sobel(mask, cv2.CV_64F, 0, 1, ksize=7)
  else:
    print("Invalid gradient direction. Must be x or y")
    quit()

  # sobel = np.absolute(sobel)
  sobel = contrast_stretch(sobel)   # expand contrast
  sobel = np.uint8(sobel)

  return sobel 
开发者ID:PRBonn,项目名称:bonnet,代码行数:23,代码来源:plant_features.py

示例10: compute_energy_matrix

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def compute_energy_matrix(img): 
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
 
    # Compute X derivative of the image 
    sobel_x = cv2.Sobel(gray,cv2.CV_64F, 1, 0, ksize=3) 
 
    # Compute Y derivative of the image 
    sobel_y = cv2.Sobel(gray,cv2.CV_64F, 0, 1, ksize=3) 
 
    abs_sobel_x = cv2.convertScaleAbs(sobel_x) 
    abs_sobel_y = cv2.convertScaleAbs(sobel_y) 
 
    # Return weighted summation of the two images i.e. 0.5*X + 0.5*Y 
    return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0) 
 
# Find vertical seam in the input image 
开发者ID:PacktPublishing,项目名称:OpenCV-3-x-with-Python-By-Example,代码行数:18,代码来源:reduce_image_by_seam_carving.py

示例11: abs_sobel_thresh

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):

    # Apply the following steps to img
    # 1) Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

    # 2) Take the derivative in x or y given orient = 'x' or 'y'
    # 3) Take the absolute value of the derivative or gradient
    if orient == 'x':
        abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
    if orient == 'y':
        abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel))

    # 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
    scaled_sobel = np.uint8(255.*abs_sobel/np.max(abs_sobel))

    # 5) Create a mask of 1's where the scaled gradient magnitude
    # is > thresh_min and < thresh_max
    binary_output = np.zeros_like(scaled_sobel)
    binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1

    return binary_output 
开发者ID:JunshengFu,项目名称:vehicle-detection,代码行数:24,代码来源:lane.py

示例12: mag_thresh

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def mag_thresh(img, sobel_kernel=3, thresh=(0, 255)):

    # Apply the following steps to img
    # 1) Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

    # 2) Take the gradient in x and y separately
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)

    # 3) Calculate the magnitude
    gradmag = np.sqrt(sobelx**2 + sobely**2)

    # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
    scale_factor = np.max(gradmag)/255
    gradmag = (gradmag/scale_factor).astype(np.uint8)

    # 5) Create a binary mask where mag thresholds are met
    binary_output = np.zeros_like(gradmag)
    binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1

    return binary_output 
开发者ID:JunshengFu,项目名称:vehicle-detection,代码行数:24,代码来源:lane.py

示例13: find_edges

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def find_edges(img, s_thresh=s_thresh, sx_thresh=sx_thresh, dir_thresh=dir_thresh):

    img = np.copy(img)
    # Convert to HSV color space and threshold the s channel
    hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(np.float)
    s_channel = hls[:,:,2]
    s_binary = threshold_col_channel(s_channel, thresh=s_thresh)

    # Sobel x
    sxbinary = abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=sx_thresh)
    # mag_binary = mag_thresh(img, sobel_kernel=3, thresh=m_thresh)
    # # gradient direction
    dir_binary = dir_threshold(img, sobel_kernel=3, thresh=dir_thresh)
    #
    # # output mask
    combined_binary = np.zeros_like(s_channel)
    combined_binary[(( (sxbinary == 1) & (dir_binary==1) ) | ( (s_binary == 1) & (dir_binary==1) ))] = 1

    # add more weights for the s channel
    c_bi = np.zeros_like(s_channel)
    c_bi[( (sxbinary == 1) & (s_binary==1) )] = 2

    ave_binary = (combined_binary + c_bi)

    return ave_binary 
开发者ID:JunshengFu,项目名称:vehicle-detection,代码行数:27,代码来源:lane.py

示例14: preprocess

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def preprocess(image):
	# load the image
	image = cv2.imread(args["image"])

	#resize image
	image = cv2.resize(image,None,fx=0.7, fy=0.7, interpolation = cv2.INTER_CUBIC)

	#convert to grayscale
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

	#calculate x & y gradient
	gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
	gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)

	# subtract the y-gradient from the x-gradient
	gradient = cv2.subtract(gradX, gradY)
	gradient = cv2.convertScaleAbs(gradient)

	# blur the image
	blurred = cv2.blur(gradient, (3, 3))

	# threshold the image
	(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
	thresh = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	return thresh 
开发者ID:pyxploiter,项目名称:Barcode-Detection-and-Decoding,代码行数:27,代码来源:barcodeD&D_zbar.py

示例15: preprocess_hog

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Sobel [as 别名]
def preprocess_hog(digits):
	samples = []
	for img in digits:
		gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
		gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
		mag, ang = cv2.cartToPolar(gx, gy)
		bin_n = 16
		bin = np.int32(bin_n*ang/(2*np.pi))
		bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
		mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
		hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
		hist = np.hstack(hists)
		
		# transform to Hellinger kernel
		eps = 1e-7
		hist /= hist.sum() + eps
		hist = np.sqrt(hist)
		hist /= norm(hist) + eps
		
		samples.append(hist)
	return np.float32(samples) 
开发者ID:DataXujing,项目名称:vehicle-license-plate-recognition,代码行数:23,代码来源:svm_train.py


注:本文中的cv2.Sobel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。