本文整理汇总了Python中cv2.Rodrigues方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.Rodrigues方法的具体用法?Python cv2.Rodrigues怎么用?Python cv2.Rodrigues使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.Rodrigues方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pnp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def pnp(points_3D, points_2D, cameraMatrix):
try:
distCoeffs = pnp.distCoeffs
except:
distCoeffs = np.zeros((8, 1), dtype='float32')
assert points_2D.shape[0] == points_2D.shape[0], 'points 3D and points 2D must have same number of vertices'
_, R_exp, t = cv2.solvePnP(points_3D,
# points_2D,
np.ascontiguousarray(points_2D[:,:2]).reshape((-1,1,2)),
cameraMatrix,
distCoeffs)
# , None, None, False, cv2.SOLVEPNP_UPNP)
R, _ = cv2.Rodrigues(R_exp)
return R, t
示例2: solve_head_pose
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def solve_head_pose(self, face_landmarks):
indices = [17, 21, 22, 26, 36, 39, 42, 45, 31, 35]
image_pts = np.zeros((len(indices), 2))
for i in range(len(indices)):
part = face_landmarks.part(indices[i])
image_pts[i, 0] = part.x
image_pts[i, 1] = part.y
_, rotation_vec, translation_vec = cv2.solvePnP(self.face_model_points,
image_pts,
self.camera_matrix,
self.distortion_coeffs)
projected_head_pose_box_points, _ = cv2.projectPoints(self.head_pose_box_points,
rotation_vec,
translation_vec,
self.camera_matrix,
self.distortion_coeffs)
projected_head_pose_box_points = tuple(map(tuple, projected_head_pose_box_points.reshape(8, 2)))
# Calculate euler angle
rotation_mat, _ = cv2.Rodrigues(rotation_vec)
pose_mat = cv2.hconcat((rotation_mat, translation_vec))
_, _, _, _, _, _, euler_angles = cv2.decomposeProjectionMatrix(pose_mat)
return projected_head_pose_box_points, euler_angles
示例3: fun
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def fun(self, x, params):
#skalowanie
s = params[0]
#rotacja
r = params[1:4]
#przesuniecie (translacja)
t = params[4:6]
w = params[6:]
mean3DShape = x[0]
blendshapes = x[1]
#macierz rotacji z wektora rotacji, wzor Rodriguesa
R = cv2.Rodrigues(r)[0]
P = R[:2]
shape3D = mean3DShape + np.sum(w[:, np.newaxis, np.newaxis] * blendshapes, axis=0)
projected = s * np.dot(P, shape3D) + t[:, np.newaxis]
return projected
示例4: rotmat2aa
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def rotmat2aa(rotmats):
"""
Convert rotation matrices to angle-axis using opencv's Rodrigues formula.
Args:
rotmats: A np array of shape (..., 3, 3)
Returns:
A np array of shape (..., 3)
"""
assert rotmats.shape[-1] == 3 and rotmats.shape[-2] == 3 and len(rotmats.shape) >= 3, 'invalid input dimension'
orig_shape = rotmats.shape[:-2]
rots = np.reshape(rotmats, [-1, 3, 3])
aas = np.zeros([rots.shape[0], 3])
for i in range(rots.shape[0]):
aas[i] = np.squeeze(cv2.Rodrigues(rots[i])[0])
return np.reshape(aas, orig_shape + (3,))
示例5: rotmat2aa
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def rotmat2aa(rotmats):
"""
Convert rotation matrices to angle-axis format.
Args:
oris: np array of shape (seq_length, n_joints*9).
Returns: np array of shape (seq_length, n_joints*3)
"""
seq_length = rotmats.shape[0]
assert rotmats.shape[1] % 9 == 0
n_joints = rotmats.shape[1] // 9
ori = np.reshape(rotmats, [seq_length*n_joints, 3, 3])
aas = np.zeros([seq_length*n_joints, 3])
for i in range(ori.shape[0]):
aas[i] = np.squeeze(cv2.Rodrigues(ori[i])[0])
return np.reshape(aas, [seq_length, n_joints*3])
示例6: getShape3D
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def getShape3D(mean3DShape, blendshapes, params):
#skalowanie
s = params[0]
#rotacja
r = params[1:4]
#przesuniecie (translacja)
t = params[4:6]
w = params[6:]
#macierz rotacji z wektora rotacji, wzor Rodriguesa
R = cv2.Rodrigues(r)[0]
shape3D = mean3DShape + np.sum(w[:, np.newaxis, np.newaxis] * blendshapes, axis=0)
shape3D = s * np.dot(R, shape3D)
shape3D[:2, :] = shape3D[:2, :] + t[:, np.newaxis]
return shape3D
示例7: gen_RT_matrix
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def gen_RT_matrix(path):
with open(path, 'r') as f:
lines = f.readlines()
lines = lines[0].split(' ')
R_vec = np.array([float(lines[3]),float(lines[5]), float(lines[4])]).reshape(3, 1)
T_vec = np.array([float(lines[0]),float(lines[1]), float(lines[2])]).reshape(3, 1)
R_vec = np.array(R_vec).reshape(3,1)
T_vec = np.array(T_vec).reshape(3,1)
R_mat = cv2.Rodrigues(R_vec)[0].reshape(3,3)
RT_mat = np.hstack((R_mat, T_vec)).reshape(3,4)
RT_mat = np.vstack((RT_mat, [0,0,0,1])).reshape(4,4)
return inv(RT_mat)
# read strandsXXXXX_YYYYY_AAAAA_mBB.convdata
# Dimension: 100*4*32*32
# v[i,0:3,n,m] is the x,y,z position of the ith point on the [n,m]th strand.
# v[i,3,n,m] is a value related to the curvature of that point.
# if v[:,:,n,m] all equals to 0, it means it is an empty strand.
# x: v[i,3,n,m][0]
示例8: compute_pose_error
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def compute_pose_error(kpts1, kpts2_3d_2, matches, vis1, vis2, T_2to1, K1,
reproj_thresh):
valid = vis1[matches[:, 0]] & vis2[matches[:, 1]]
matches = matches[valid]
failure = (None, None)
if len(matches) < 4:
return failure
kpts1 = kpts1[matches[:, 0]].astype(np.float32).reshape((-1, 1, 2))
kpts2_3d_2 = kpts2_3d_2[matches[:, 1]].reshape((-1, 1, 3))
success, R_vec, t, inliers = cv2.solvePnPRansac(
kpts2_3d_2, kpts1, K1, np.zeros(4), flags=cv2.SOLVEPNP_P3P,
iterationsCount=1000, reprojectionError=reproj_thresh)
if not success:
return failure
R, _ = cv2.Rodrigues(R_vec)
t = t[:, 0]
error_t = np.linalg.norm(t - T_2to1[:3, 3])
error_R = angle_error(R, T_2to1[:3, :3])
return error_t, error_R
示例9: rotated
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def rotated(self,
verts,
deg,
cam=None,
axis='y',
img=None,
do_alpha=True,
far=None,
near=None,
color_id=0,
img_size=None):
import math
if axis == 'y':
around = cv2.Rodrigues(np.array([0, math.radians(deg), 0]))[0]
elif axis == 'x':
around = cv2.Rodrigues(np.array([math.radians(deg), 0, 0]))[0]
else:
around = cv2.Rodrigues(np.array([0, 0, math.radians(deg)]))[0]
center = verts.mean(axis=0)
new_v = np.dot((verts - center), around) + center
return self.__call__(
new_v,
cam,
img=img,
do_alpha=do_alpha,
far=far,
near=near,
img_size=img_size,
color_id=color_id)
示例10: global_rigid_transformation
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def global_rigid_transformation(pose, J, kintree_table, xp):
results = {}
pose = pose.reshape((-1,3))
id_to_col = {kintree_table[1,i] : i for i in range(kintree_table.shape[1])}
parent = {i : id_to_col[kintree_table[0,i]] for i in range(1, kintree_table.shape[1])}
if xp == chumpy:
from posemapper import Rodrigues
rodrigues = lambda x : Rodrigues(x)
else:
import cv2
rodrigues = lambda x : cv2.Rodrigues(x)[0]
with_zeros = lambda x : xp.vstack((x, xp.array([[0.0, 0.0, 0.0, 1.0]])))
results[0] = with_zeros(xp.hstack((rodrigues(pose[0,:]), J[0,:].reshape((3,1)))))
for i in range(1, kintree_table.shape[1]):
results[i] = results[parent[i]].dot(with_zeros(xp.hstack((
rodrigues(pose[i,:]),
((J[i,:] - J[parent[i],:]).reshape((3,1)))
))))
pack = lambda x : xp.hstack([np.zeros((4, 3)), x.reshape((4,1))])
results = [results[i] for i in sorted(results.keys())]
results_global = results
if True:
results2 = [results[i] - (pack(
results[i].dot(xp.concatenate( ( (J[i,:]), 0 ) )))
) for i in range(len(results))]
results = results2
result = xp.dstack(results)
return result, results_global
示例11: compute_r
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def compute_r(self):
return cv2.Rodrigues(self.rt.r)[0]
示例12: compute_dr_wrt
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def compute_dr_wrt(self, wrt):
if wrt is self.rt:
return cv2.Rodrigues(self.rt.r)[1].T
示例13: lrotmin
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def lrotmin(p):
if isinstance(p, np.ndarray):
p = p.ravel()[3:]
return np.concatenate([(cv2.Rodrigues(np.array(pp))[0]-np.eye(3)).ravel() for pp in p.reshape((-1,3))]).ravel()
if p.ndim != 2 or p.shape[1] != 3:
p = p.reshape((-1,3))
p = p[1:]
return ch.concatenate([(Rodrigues(pp)-ch.eye(3)).ravel() for pp in p]).ravel()
示例14: solve_pose_by_68_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def solve_pose_by_68_points(self, image_points):
"""
Solve pose from all the 68 image points
Return (rotation_vector, translation_vector) as pose.
"""
if self.r_vec is None:
(_, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points_68, image_points, self.camera_matrix, self.dist_coefs)
self.r_vec = rotation_vector
self.t_vec = translation_vector
(_, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points_68,
image_points,
self.camera_matrix,
self.dist_coefs,
rvec=self.r_vec,
tvec=self.t_vec,
useExtrinsicGuess=True)
R, _ = cv2.Rodrigues(rotation_vector)
points_3d = R.dot(self.model_points_68.T) + translation_vector # 3x68
reproject_image_points = self.camera_matrix.dot(points_3d).T # 68x2
reproject_image_points /= reproject_image_points[:, 2:3]
reproject_image_points = reproject_image_points[:, :2]
reprojection_error = np.mean((image_points - reproject_image_points)**2)
return reprojection_error, rotation_vector, translation_vector
示例15: pnp_ransac
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Rodrigues [as 别名]
def pnp_ransac(self,rgb_aug_test,img_prob_ori,non_zero,v1,v2,u1,u2):
rgb_aug_crop =rgb_aug_test[v1:v2,u1:u2]
xyz = np.copy(rgb_aug_crop)
xyz =xyz/255
xyz = xyz*2-1
xyz[:,:,0]=xyz[:,:,0]*self.obj_scale[0]+self.obj_ct[0]
xyz[:,:,1]=xyz[:,:,1]*self.obj_scale[1]+self.obj_ct[1]
xyz[:,:,2]=xyz[:,:,2]*self.obj_scale[2]+self.obj_ct[2]
confidence_mask = img_prob_ori< self.th_i
valid_mask = np.logical_and(non_zero ,confidence_mask)
vu_list_s= np.where(valid_mask==1)
n_pts_s=len(vu_list_s[0])
img_pts_s = np.zeros((n_pts_s,2))
obj_pts_s=xyz[vu_list_s[0],vu_list_s[1]]
img_pts_s[:]=np.stack( (vu_list_s[1],vu_list_s[0]),axis=1) #u,v order
img_pts_s[:,0]=img_pts_s[:,0]+u1
img_pts_s[:,1]=img_pts_s[:,1]+v1
img_pts_s = np.ascontiguousarray(img_pts_s[:,:2]).reshape((n_pts_s,1,2))
if(n_pts_s <6):
return np.eye(3),np.array([0,0,0]),valid_mask,-1
ret, rvec, tvec,inliers = cv2.solvePnPRansac(obj_pts_s, img_pts_s, self.camK,None,\
flags=cv2.SOLVEPNP_EPNP,reprojectionError=3,iterationsCount=100)
if(inliers is None):
return np.eye(3),np.array([0,0,0]),-1,-1
else:
rot_pred = np.eye(3)
tra_pred = tvec[:,0]
cv2.Rodrigues(rvec, rot_pred)
return rot_pred,tra_pred,valid_mask,len(inliers)