本文整理汇总了Python中cv2.Laplacian方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.Laplacian方法的具体用法?Python cv2.Laplacian怎么用?Python cv2.Laplacian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.Laplacian方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: laplacian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def laplacian(filepathname):
v = cv2.imread(filepathname)
s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY)
s = cv2.Laplacian(s, cv2.CV_16S, ksize=3)
s = cv2.convertScaleAbs(s)
cv2.imshow('nier',s)
return s
# ret, binary = cv2.threshold(s,40,255,cv2.THRESH_BINARY)
# contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# for c in contours:
# x,y,w,h = cv2.boundingRect(c)
# if w>5 and h>10:
# cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1)
# cv2.imshow('nier2',v)
# cv2.waitKey()
# cv2.destroyAllWindows()
示例2: _lapulaseDetection
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def _lapulaseDetection(self, imgName):
"""
:param strdir: 文件所在的目录
:param name: 文件名称
:return: 检测模糊后的分数
"""
# step1: 预处理
img2gray, reImg = self.preImgOps(imgName)
# step2: laplacian算子 获取评分
resLap = cv2.Laplacian(img2gray, cv2.CV_64F)
score = resLap.var()
print("Laplacian %s score of given image is %s", str(score))
# strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_lapulaseDetection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
# 显示
cv2.imwrite(newPath, newImg) # 保存图片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
# step3: 返回分数
return score
示例3: _find_edges_laplacian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def _find_edges_laplacian(image, edge_multiplier, from_colorspace):
image_gray = colorlib.change_colorspace_(np.copy(image),
to_colorspace=colorlib.CSPACE_GRAY,
from_colorspace=from_colorspace)
image_gray = image_gray[..., 0]
edges_f = cv2.Laplacian(_normalize_cv2_input_arr_(image_gray / 255.0),
cv2.CV_64F)
edges_f = np.abs(edges_f)
edges_f = edges_f ** 2
vmax = np.percentile(edges_f, min(int(90 * (1/edge_multiplier)), 99))
edges_f = np.clip(edges_f, 0.0, vmax) / vmax
edges_uint8 = np.clip(np.round(edges_f * 255), 0, 255.0).astype(np.uint8)
edges_uint8 = _blur_median(edges_uint8, 3)
edges_uint8 = _threshold(edges_uint8, 50)
return edges_uint8
# Added in 0.4.0.
示例4: laplacian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def laplacian(mask):
'''
Get 2nd order gradients using the Laplacian
'''
# blur
mask = cv2.GaussianBlur(mask, (5, 5), 0)
# edges with laplacian
laplacian = cv2.Laplacian(mask, cv2.CV_64F, 5)
# stretch
laplacian = contrast_stretch(laplacian)
# cast
laplacian = np.uint8(laplacian)
return laplacian
示例5: preprocess_filt_lap
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def preprocess_filt_lap(self):
'''
Do the pre processing using Laplacian filter (2.5 min / 4 min).
'''
import cv2
import numpy as np
if self.zeroMask is not None:
self.zeroMask = (self.I1 == 0)
self.I1 = 20.0 * np.log10(self.I1)
self.I1 = cv2.Laplacian(self.I1,-1,ksize=self.WallisFilterWidth,borderType=cv2.BORDER_CONSTANT)
self.I2 = 20.0 * np.log10(self.I2)
self.I2 = cv2.Laplacian(self.I2,-1,ksize=self.WallisFilterWidth,borderType=cv2.BORDER_CONSTANT)
示例6: get_laplace_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def get_laplace_points(self, image: np.ndarray, num_points=500) -> np.ndarray:
if num_points <= 0:
return np.zeros((0, 2), dtype=np.uint8)
image = cv2.GaussianBlur(image, (15, 15), 0)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = np.uint8(np.absolute(cv2.Laplacian(image, cv2.CV_64F, 19)))
image = cv2.GaussianBlur(image, (15, 15), 0)
image = (image * (255 / image.max())).astype(np.uint8)
image = image.astype(np.float32) / image.sum()
if self.options['visualize_laplace']:
self.visualize_image(image, 'laplace')
weights = np.ravel(image)
coordinates = np.arange(0, weights.size, dtype=np.uint32)
choices = np.random.choice(coordinates, size=num_points, replace=False, p=weights)
raw_points = np.unravel_index(choices, image.shape)
points = np.stack(raw_points, axis=-1)[..., ::-1]
return points
示例7: get_best_images
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def get_best_images(plate_images, num_img_return):
"""
Get the top num_img_return quality images (with the least blur).
Laplacian function returns a value which indicates how blur the image is.
The lower the value, the more blur the image have
"""
# first, pick the image with the largest area because the bigger the image, the bigger the characters on the plate
if len(plate_images) > (num_img_return + 2):
plate_images = sorted(plate_images, key=lambda x : x[0].shape[0]*x[0].shape[1], reverse=True)[:(num_img_return+2)]
# secondly, pick the images with the least blur
if len(plate_images) > num_img_return:
plate_images = sorted(plate_images, key=lambda img : cv2.Laplacian(img[0], cv2.CV_64F).var(), reverse=True)[:num_img_return]
# img[0] because plate_images = [plate image, char on plate]
return plate_images
示例8: variance_of_laplacian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def variance_of_laplacian(image):
# compute the Laplacian of the image and then return the focus
# measure, which is simply the variance of the Laplacian
return cv2.Laplacian(image, cv2.CV_64F).var()
# In[ ]:
# In[ ]:
#accuracy_score(y, y_pred)
# In[4]:
示例9: sketch_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def sketch_image(img):
"""Sketches the image applying a laplacian operator to detect the edges"""
# Convert to gray scale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply median filter
img_gray = cv2.medianBlur(img_gray, 5)
# Detect edges using cv2.Laplacian()
edges = cv2.Laplacian(img_gray, cv2.CV_8U, ksize=5)
# Threshold the edges image:
ret, thresholded = cv2.threshold(edges, 70, 255, cv2.THRESH_BINARY_INV)
return thresholded
示例10: worker
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def worker(path, select_folder, waste_img_folder, crop_sz, stride, thres_sz, cont_var_thresh, freq_var_thresh):
img_name = os.path.basename(path)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
h, w, c = img.shape
h_space = np.arange(0, h - crop_sz + 1, stride)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, stride)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
index = 0
for x in h_space:
for y in w_space:
index += 1
patch_name = img_name.replace('.png', '_s{:05d}.png'.format(index))
patch = img[x:x + crop_sz, y:y + crop_sz, :]
im_gray = patch[:, :, 1]
[mean, var] = cv2.meanStdDev(im_gray)
freq_var = cv2.Laplacian(im_gray, cv2.CV_8U).var()
if var > cont_var_thresh and freq_var>freq_var_thresh:
cv2.imwrite(os.path.join(select_folder, patch_name), patch)
else:
cv2.imwrite(os.path.join(waste_img_folder, patch_name), patch)
return 'Processing {:s} ...'.format(img_name)
示例11: LaplacianOfGaussian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def LaplacianOfGaussian(image):
LoG_image = cv2.GaussianBlur(image, (3,3), 0) # paramter
gray = cv2.cvtColor( LoG_image, cv2.COLOR_BGR2GRAY)
LoG_image = cv2.Laplacian( gray, cv2.CV_8U,3,3,2) # parameter
LoG_image = cv2.convertScaleAbs(LoG_image)
return LoG_image
示例12: extract_sub_features
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def extract_sub_features(self, img, debug=False):
laplacian_threshold = 192
img_subavg = sub_average(img)
img_gray = cv2.cvtColor(img_subavg, cv2.COLOR_BGR2GRAY)
img_gray_laplacian = cv2.Laplacian(img_gray, cv2.CV_64F)
img_laplacian_abs = cv2.convertScaleAbs(img_gray_laplacian)
a, img_laplacian_abs_thres = cv2.threshold(
img_laplacian_abs, laplacian_threshold, 255, 0)
img_gray_custom = get_img_custom(None, img_gray)
img_gray_custom = max_pooling_2d(None, img_gray, (4, 4))
return np.array(img_gray_custom, dtype=np.float32)
# Define weapon classification specific features.
示例13: down_sample_2d
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def down_sample_2d(self, src, w, h):
sy, sx = src.shape[0:2]
out_img = np.zeros((h, w), np.uint8)
for x in range(w):
for y in range(h):
x1 = int((x / w) * sx)
y1 = int((y / h) * sy)
x2 = int(((x + 1) / w) * sx)
y2 = int(((y + 1) / h) * sy)
out_img[y, x] = np.amax(src[y1:y2, x1:x2])
max_value = np.amax(out_img)
if max_value > 0:
out_img = ((out_img * 1.0) / max_value)
if 0:
cv2.imshow('orig', cv2.resize(src, (128, 128),
interpolation=cv2.INTER_NEAREST))
cv2.imshow('resize', cv2.resize(
out_img, (128, 128), interpolation=cv2.INTER_NEAREST))
cv2.waitKey(10)
return out_img
# Normalize the image.
#
# - Crop the image
# - Apply Laplacian edge detector
# - Convert to grayscale
# - Threshold the image
# - Down-sample to 12x12
#
# @param img the source image
# @return (img,out_img) the result
示例14: normalize_icon_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def normalize_icon_image(self, img):
h, w = img.shape[0:2]
laplacian_threshold = 60
img_laplacian = cv2.Laplacian(img, cv2.CV_64F)
img_laplacian_abs = cv2.convertScaleAbs(img_laplacian)
img_laplacian_gray = \
cv2.cvtColor(img_laplacian_abs, cv2.COLOR_BGR2GRAY)
ret, img_laplacian_mask = \
cv2.threshold(img_laplacian_gray, laplacian_threshold, 255, 0)
out_img = self.down_sample_2d(img_laplacian_mask, 12, 12)
if False:
cv2.imshow('orig', cv2.resize(img, (160, 160)))
cv2.imshow('laplacian_abs', cv2.resize(
img_laplacian_abs, (160, 160)))
cv2.imshow('laplacian_gray', cv2.resize(
img_laplacian_gray, (160, 160)))
cv2.imshow('out', cv2.resize(out_img, (160, 160)))
cv2.moveWindow('orig', 80, 20)
cv2.moveWindow('laplacian_abs', 80, 220)
cv2.moveWindow('laplacian_gray', 80, 420)
cv2.moveWindow('out', 80, 820)
ch = 0xFF & cv2.waitKey(1)
if ch == ord('q'):
sys.exit()
return [
out_img,
img,
img, # ununsed
]
# Define feature extraction algorithm.
示例15: cartoonize_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import Laplacian [as 别名]
def cartoonize_image(img, ksize=5, sketch_mode=False):
num_repetitions, sigma_color, sigma_space, ds_factor = 10, 5, 7, 4
# Convert image to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply median filter to the grayscale image
img_gray = cv2.medianBlur(img_gray, 7)
# Detect edges in the image and threshold it
edges = cv2.Laplacian(img_gray, cv2.CV_8U, ksize=ksize)
ret, mask = cv2.threshold(edges, 100, 255, cv2.THRESH_BINARY_INV)
# 'mask' is the sketch of the image
if sketch_mode:
return cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
# Resize the image to a smaller size for faster computation
img_small = cv2.resize(img, None, fx=1.0/ds_factor, fy=1.0/ds_factor, interpolation=cv2.INTER_AREA)
# Apply bilateral filter the image multiple times
for i in range(num_repetitions):
img_small = cv2.bilateralFilter(img_small, ksize, sigma_color, sigma_space)
img_output = cv2.resize(img_small, None, fx=ds_factor, fy=ds_factor, interpolation=cv2.INTER_LINEAR)
dst = np.zeros(img_gray.shape)
# Add the thick boundary lines to the image using 'AND' operator
dst = cv2.bitwise_and(img_output, img_output, mask=mask)
return dst