当前位置: 首页>>代码示例>>Python>>正文


Python cv2.KalmanFilter方法代码示例

本文整理汇总了Python中cv2.KalmanFilter方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.KalmanFilter方法的具体用法?Python cv2.KalmanFilter怎么用?Python cv2.KalmanFilter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv2的用法示例。


在下文中一共展示了cv2.KalmanFilter方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: myKalman

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import KalmanFilter [as 别名]
def myKalman(tid):
    if tid not in workers:
        kalman = cv2.KalmanFilter(4, 2) # 4:状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离);2:观测量,能看到的是坐标值
        kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32) # 系统测量矩阵
        kalman.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) # 状态转移矩阵
        kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)*0.03 # 系统过程噪声协方差
        KalmanNmae[tid] = kalman 
开发者ID:lyk19940625,项目名称:WorkControl,代码行数:9,代码来源:utils.py

示例2: create_kalman

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import KalmanFilter [as 别名]
def create_kalman(self):
    """Creates kalman filter."""

    kalman = cv2.KalmanFilter(4, 2)
    kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]],
                                        np.float32)

    kalman.transitionMatrix = np.array(
        [[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)

    kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
                                       [0, 0, 0, 1]], np.float32) * 0.03
    self.kalman = kalman
    self.measurement = np.array((2, 1), np.float32)
    self.prediction = np.zeros((2, 1), np.float32) 
开发者ID:google,项目名称:automl-video-ondevice,代码行数:17,代码来源:camshift_object_tracker.py

示例3: __init__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import KalmanFilter [as 别名]
def __init__(self,
                 state_num=4,
                 measure_num=2,
                 cov_process=0.0001,
                 cov_measure=0.1):
        """Initialization"""
        # Currently we only support scalar and point, so check user input first.
        assert state_num == 4 or state_num == 2, "Only scalar and point supported, Check state_num please."

        # Store the parameters.
        self.state_num = state_num
        self.measure_num = measure_num

        # The filter itself.
        self.filter = cv2.KalmanFilter(state_num, measure_num, 0)

        # Store the state.
        self.state = np.zeros((state_num, 1), dtype=np.float32)

        # Store the measurement result.
        self.measurement = np.array((measure_num, 1), np.float32)

        # Store the prediction.
        self.prediction = np.zeros((state_num, 1), np.float32)

        # Kalman parameters setup for scalar.
        if self.measure_num == 1:
            self.filter.transitionMatrix = np.array([[1, 1],
                                                     [0, 1]], np.float32)

            self.filter.measurementMatrix = np.array([[1, 1]], np.float32)

            self.filter.processNoiseCov = np.array([[1, 0],
                                                    [0, 1]], np.float32) * cov_process

            self.filter.measurementNoiseCov = np.array(
                [[1]], np.float32) * cov_measure

        # Kalman parameters setup for point.
        if self.measure_num == 2:
            self.filter.transitionMatrix = np.array([[1, 0, 1, 0],
                                                     [0, 1, 0, 1],
                                                     [0, 0, 1, 0],
                                                     [0, 0, 0, 1]], np.float32)

            self.filter.measurementMatrix = np.array([[1, 0, 0, 0],
                                                      [0, 1, 0, 0]], np.float32)

            self.filter.processNoiseCov = np.array([[1, 0, 0, 0],
                                                    [0, 1, 0, 0],
                                                    [0, 0, 1, 0],
                                                    [0, 0, 0, 1]], np.float32) * cov_process

            self.filter.measurementNoiseCov = np.array([[1, 0],
                                                        [0, 1]], np.float32) * cov_measure 
开发者ID:kwea123,项目名称:VTuber_Unity,代码行数:57,代码来源:stabilizer.py


注:本文中的cv2.KalmanFilter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。