本文整理汇总了Python中cv2.HoughLines方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.HoughLines方法的具体用法?Python cv2.HoughLines怎么用?Python cv2.HoughLines使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.HoughLines方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: detect_lines
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def detect_lines(self, canny_low_thresh, canny_high_thresh, canny_kernel_size,
hough_rho_res, hough_theta_res, hough_votes_thresh,
gray_conversion=cv2.COLOR_BGR2GRAY):
"""
Detect lines in input image using hough transform.
Return detected lines as list with tuples:
(rho, theta, normalized theta with 0 <= theta_norm < np.pi, DIRECTION_VERTICAL or DIRECTION_HORIZONTAL)
"""
self.gray_img = cv2.cvtColor(self.input_img, gray_conversion)
self.edges = cv2.Canny(self.gray_img, canny_low_thresh, canny_high_thresh, apertureSize=canny_kernel_size)
# detect lines with hough transform
lines = cv2.HoughLines(self.edges, hough_rho_res, hough_theta_res, hough_votes_thresh)
if lines is None:
lines = []
self.lines_hough = self._generate_hough_lines(lines)
return self.lines_hough
示例2: _generate_hough_lines
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def _generate_hough_lines(self, lines):
"""
From a list of lines in <lines> detected by cv2.HoughLines, create a list with a tuple per line
containing:
(rho, theta, normalized theta with 0 <= theta_norm < np.pi, DIRECTION_VERTICAL or DIRECTION_HORIZONTAL)
"""
lines_hough = []
for l in lines:
rho, theta = l[0] # they come like this from OpenCV's hough transform
theta_norm = normalize_angle(theta)
if abs(PIHLF - theta_norm) > PI4TH: # vertical
line_dir = DIRECTION_VERTICAL
else:
line_dir = DIRECTION_HORIZONTAL
lines_hough.append((rho, theta, theta_norm, line_dir))
return lines_hough
示例3: estimate_skew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def estimate_skew(image):
edges = auto_canny(image)
lines = cv2.HoughLines(edges, 1, np.pi / 90, 200)
new = edges.copy()
thetas = []
for line in lines:
for rho, theta in line:
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 1000 * (-b))
y1 = int(y0 + 1000 * (a))
x2 = int(x0 - 1000 * (-b))
y2 = int(y0 - 1000 * (a))
if theta > np.pi / 3 and theta < np.pi * 2 / 3:
thetas.append(theta)
new = cv2.line(new, (x1, y1), (x2, y2), (255, 255, 255), 1)
theta_mean = np.mean(thetas)
theta = rad_to_deg(theta_mean) if len(thetas) > 0 else 0
return theta
示例4: hough_line
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def hough_line(self):
src = self.cv_read_img(self.src_file)
if src is None:
return
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3)
lines = cv.HoughLines(edges, 1, np.pi/180, 200)
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0+1000*(-b))
y1 = int(y0+1000*(a))
x2 = int(x0-1000*(-b))
y2 = int(y0-1000*(a))
cv.line(src, (x1, y1), (x2, y2), (0, 0, 255), 2)
self.decode_and_show_dst(src)
# 圆检测
示例5: _get_lines
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def _get_lines(image_segment, params):
lines = []
temp = cv2.HoughLines(image_segment.binarized_segmented_image, params.rho, params.theta, params.threshold)
if temp is None:
return lines
rho_theta_pairs = [temp[idx][0] for idx in range(len(temp))]
if len(rho_theta_pairs) > params.max_num:
rho_theta_pairs = rho_theta_pairs[:params.max_num]
nms_rho_theta_pairs = dimension_wise_non_maximum_suppression(rho_theta_pairs, (params.nms_rho, params.nms_theta),
_dimension_wise_distances_between_rho_theta_pairs)
for rho_theta_pair in rho_theta_pairs:
curr_lines = _segment_line(image_segment, rho_theta_pair, params)
lines.extend(curr_lines)
return lines
示例6: crop_point_hough
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def crop_point_hough(crop_points):
height = len(crop_points)
width = len(crop_points[0])
#crop_line_data = cv2.HoughLinesP(crop_points, 1, math.pi/180, 2, 10, 10)
crop_line_data = cv2.HoughLines(crop_points, HOUGH_RHO, HOUGH_ANGLE, HOUGH_THRESH)
crop_lines = np.zeros((height, width, 3), dtype=np.uint8)
if crop_line_data != None:
crop_line_data = crop_line_data[0]
#print(crop_line_data)
if len(crop_line_data[0]) == 2:
for [rho, theta] in crop_line_data:
#print(rho, theta)
if (theta <= ANGLE_THRESH) or (theta >= math.pi-ANGLE_THRESH):
a = math.cos(theta)
b = math.sin(theta)
x0 = a*rho
y0 = b*rho
point1 = (int(round(x0+1000*(-b))), int(round(y0+1000*(a))))
point2 = (int(round(x0-1000*(-b))), int(round(y0-1000*(a))))
cv2.line(crop_lines, point1, point2, (0, 0, 255), 2)
elif len(crop_line_data[0]) == 4:
for [x0, y0, x1, y1] in crop_line_data:
cv2.line(crop_lines, (x0, y0), (x1, y1), (0, 0, 255), 2)
else:
print("No lines found")
return crop_lines
示例7: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def main():
capture = cv2.VideoCapture(0)
while True:
ret, frame = capture.read()
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges_detec = cv2.Canny(gray_frame, 50, 250, apertureSize=5, L2gradient=True)
hough_lines = cv2.HoughLines(edges_detec, 1, np.pi / 180, 200)
if hough_lines is not None:
for rho, theta in hough_lines[0]:
x0 = rho * np.cos(theta)
y0 = rho * np.sin(theta)
ptsX = (int(x0 + 1000 * (-np.sin(theta))), int(y0 + 1000 * (np.cos(theta))))
ptsY = (int(x0 - 1000 * (-np.sin(theta))), int(y0 - 1000 * (np.cos(theta))))
cv2.line(frame, ptsX, ptsY, (0, 255, 0), 2)
cv2.imshow("Capture Frame", frame)
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()
capture.release()
示例8: hough_transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def hough_transform(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Convert image to grayscale
kernel = np.ones((15, 15), np.uint8)
opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) # Open (erode, then dilate)
edges = cv2.Canny(opening, 50, 150, apertureSize=3) # Canny edge detection
lines = cv2.HoughLines(edges, 1, np.pi / 180, 200) # Hough line detection
hough_lines = []
# Lines are represented by rho, theta; converted to endpoint notation
if lines is not None:
for line in lines:
hough_lines.extend(list(starmap(endpoints, line)))
return hough_lines
示例9: extractGrid
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def extractGrid(img,
nvertical,
nhorizontal,
threshold1 = 50,
threshold2 = 150,
apertureSize = 3,
hough_threshold_step=20,
hough_threshold_min=50,
hough_threshold_max=150):
"""Finds the grid lines in a board image.
:param img: board image
:param nvertical: number of vertical lines
:param nhorizontal: number of horizontal lines
:returns: a pair (horizontal, vertical). Both elements are lists with the lines' positions.
"""
w, h, _ = img.shape
close_threshold_v = (w / nvertical) / 4
close_threshold_h = (h / nhorizontal) / 4
im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh, im_bw = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
im_canny = cv2.Canny(im_bw, threshold1, threshold2, apertureSize=apertureSize)
for i in range((hough_threshold_max - hough_threshold_min + 1) / hough_threshold_step):
lines = cv2.HoughLines(im_canny, 1, np.pi / 180, hough_threshold_max - (hough_threshold_step * i))
if lines is None:
continue
lines = [Line(l[0], l[1]) for l in lines[0]]
horizontal, vertical = partitionLines(lines)
vertical = filterCloseLines(vertical, horizontal=False, threshold=close_threshold_v)
horizontal = filterCloseLines(horizontal, horizontal=True, threshold=close_threshold_h)
if len(vertical) >= nvertical and \
len(horizontal) >= nhorizontal:
return (horizontal, vertical)
示例10: get_horizontal_lines
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def get_horizontal_lines (img):
#=====[ Step 1: set parameters ]=====
num_peaks = 5
theta_buckets_horz = [-90, -89]
theta_resolution_horz = 0.0175 #raidans
rho_resolution_horz = 6
threshold_horz = 5
#=====[ Step 2: find lines in (rho, theta) ]=====
# [H, theta, rho] = hough (corners_img, 'Theta', theta_buckets_horz, 'RhoResolution', rho_resolution_horz);
# peaks = houghpeaks(H, num_peaks);
lines_rt = cv2.HoughLines (deepcopy(img), rho_resolution_horz, theta_resolution_horz, threshold_horz)[0]
print lines_rt
#####[ DEBUG: draw lines in (rho, theta) ]#####
img = draw_lines_rho_theta (img , lines_rt)
cv2.imshow ('HORIZONTAL LINES', img)
key = 0
while key != 27:
key = cv2.waitKey (30)
#=====[ Step 3: convert peaks to rho, theta ]=====
# theta_rad = fromDegrees ('radians', theta);
# rhos = rho(peaks(:, 1));
# thetas = theta_rad(peaks(:, 2));
# lines = [rhos; thetas];
#=====[ Step 4: figure out which lines they are ]=====
# indexed_lines = horizontal_ransac (lines);
#####[ DEBUG: show lines ]#####
# draw_lines (corners_img, indexed_lines(1:2, :));
示例11: getPerspective
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def getPerspective(image, points):
yy, xx, _ = image.shape
tmp = np.zeros(image.shape[0:2], np.uint8);
drawContour(tmp, points, (255,), 1)
houghRatio=houghThreshold//hough_threshold_step
grid = None
for i in range(houghRatio):
lines = cv2.HoughLines(tmp, 1, np.pi / 180, houghThreshold-(i * hough_threshold_step))
if lines is None:
continue
lines = [Line(l[0], l[1]) for l in lines[0]]
(horizontal, vertical) = partitionLines(lines)
vertical = filterCloseLines(vertical, horizontal=False)
horizontal = filterCloseLines(horizontal, horizontal=True)
if len(vertical) == 2 and len(horizontal) == 2:
grid = (vertical, horizontal)
break
if grid is None:
return None
if vertical[0].getCenter()[0] > vertical[1].getCenter()[0]:
v2, v1 = vertical
else:
v1, v2 = vertical
if horizontal[0].getCenter()[1] > horizontal[1].getCenter()[1]:
h2, h1 = horizontal
else:
h1, h2 = horizontal
perspective = (h1.intersect(v1),
h1.intersect(v2),
h2.intersect(v2),
h2.intersect(v1))
## Doc ##
#tmp = cv2.cvtColor(tmp, cv2.COLOR_GRAY2BGR)
#drawContour(tmp, points, (0,0,255), 3)
#writeDocumentationImage(tmp, "contour_individual_bw")
#tmp_bw = tmp
#tmp_orig = image.copy()
#for tmp in (tmp_bw, tmp_orig):
# for l in (v1,v2,h1,h2): l.draw(tmp, (0,255,0), 2)
# for p in perspective: drawPoint(tmp, p, (255,0,0), 3)
#writeDocumentationImage(tmp_bw, "contour_lines_bw")
#writeDocumentationImage(tmp_orig, "contour_lines_orig")
## Doc ##
return perspective
示例12: get_chessboard_lines
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import HoughLines [as 别名]
def get_chessboard_lines (corners, image):
"""
Function: get_chessboard_lines
------------------------------
given a list of corners represented as tuples, this returns
(horizontal_lines, vertical_lines) represented as (a, b, c)
pairs
"""
#=====[ Step 1: get lines via Hough transform on corners ]=====
corners_img = np.zeros (image.shape[:2], dtype=np.uint8)
for corner in corners:
corners_img[int(corner[1])][int(corner[0])] = 255
lines = cv2.HoughLines (corners_img, 3, np.pi/180, 4)[0]
#=====[ Step 2: get vertical lines ]=====
# lines = avg_close_lines_vert (lines)
lines = [rho_theta_to_abc(l) for l in lines]
vert_lines = filter_by_slope (lines, lambda slope: (slope > 1) or (slope < -1))
vert_lines_rt = [abc_to_rho_theta (l) for l in vert_lines]
#=====[ Step 3: snap points to grid ]===
points_grid = snap_points_to_lines (vert_lines_rt, corners)
#=====[ Step 6: hough transform on points in grid to get horizontal lines ]=====
all_points = [p for l in points_grid for p in l]
corners_img = np.zeros (image.shape[:2], dtype=np.uint8)
for p in all_points:
corners_img[int(p[1])][int(p[0])] = 255
lines = cv2.HoughLines (corners_img, 3, np.pi/180, 2)[0]
lines = [rho_theta_to_abc (l) for l in lines]
horz_lines = filter_by_slope (lines, lambda slope: (slope < 0.1) and (slope > -0.1))
lines = [abc_to_rho_theta(l) for l in horz_lines]
horz_lines_rt = avg_close_lines_2 (lines)
# horz_lines_rt = lines
print horz_lines_rt
print vert_lines_rt
horz_lines = [rho_theta_to_abc (l) for l in horz_lines_rt]
vert_lines = [rho_theta_to_abc (l) for l in vert_lines_rt]
return horz_lines, vert_lines