本文整理汇总了Python中cv2.FlannBasedMatcher方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.FlannBasedMatcher方法的具体用法?Python cv2.FlannBasedMatcher怎么用?Python cv2.FlannBasedMatcher使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.FlannBasedMatcher方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: knn_match
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def knn_match(des1, des2, nn_ratio=0.7):
# FLANN parameters
index_params = dict(algorithm = 0, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# Match features from each image
matches = flann.knnMatch(des1, des2, k=2)
# store only the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
if m.distance < nn_ratio * n.distance:
good.append(m)
return good
# calculate the angle with the horizontal
示例2: init_detector
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def init_detector(self):
"""Init keypoint detector object."""
# BRIEF is a feature descriptor, recommand CenSurE as a fast detector:
if check_cv_version_is_new():
# OpenCV3/4, sift is in contrib module, you need to compile it seperately.
try:
self.detector = cv2.xfeatures2d.SIFT_create(edgeThreshold=10)
except:
import traceback
traceback.print_exc()
raise NoModuleError("There is no %s module in your OpenCV environment, need contribmodule!" % self.METHOD_NAME)
else:
# OpenCV2.x
self.detector = cv2.SIFT(edgeThreshold=10)
# # create FlnnMatcher object:
self.matcher = cv2.FlannBasedMatcher({'algorithm': self.FLANN_INDEX_KDTREE, 'trees': 5}, dict(checks=50))
示例3: init_feature
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv2.SIFT()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.SURF(800)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB(400)
norm = cv2.NORM_HAMMING
else:
return None, None
if 'flann' in chunks:
if norm == cv2.NORM_L2:
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
else:
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
else:
matcher = cv2.BFMatcher(norm)
return detector, matcher
示例4: _searchAndmatch
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def _searchAndmatch(image_1_descriptors, image_2_descriptors, threshold=0.7
,image_2_keypoint=None):
"""KNN Match"""
Good_match_keypoints, kp2_xy = [], []
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(image_1_descriptors, image_2_descriptors, k=2)
"""Lower's threshold"""
for m,n in matches:
if image_2_keypoint: kp2_xy.append(image_2_keypoint[m.trainIdx].pt)
if m.distance < threshold*n.distance: Good_match_keypoints.append(m)
return Good_match_keypoints, kp2_xy
#refine center
示例5: flann_matching
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def flann_matching(orb_match1, orb_match2):
kp1, des1 = orb_match1
kp2, des2 = orb_match2
# FLANN parameters
index_params = dict(algorithm=6, # FLANN_INDEX_LSH
table_number=12,
key_size=12,
multi_probe_level=2)
search_params = dict(checks=100) # or pass empty dictionary
flann_matcher = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann_matcher.knnMatch(des1, des2, k=2)
cor = []
# ratio test as per Lowe's paper
for m_n in matches:
if len(m_n) != 2:
continue
elif m_n[0].distance < 0.80 * m_n[1].distance:
cor.append([kp1[m_n[0].queryIdx].pt[0], kp1[m_n[0].queryIdx].pt[1],
kp2[m_n[0].trainIdx].pt[0], kp2[m_n[0].trainIdx].pt[1],
m_n[0].distance])
return np.array(cor)
示例6: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def __init__(self, norm_type=cv2.NORM_HAMMING, cross_check = False, ratio_test=kRatioTest, type = FeatureMatcherTypes.FLANN):
super().__init__(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type)
if norm_type == cv2.NORM_HAMMING:
# FLANN parameters for binary descriptors
FLANN_INDEX_LSH = 6
self.index_params= dict(algorithm = FLANN_INDEX_LSH, # Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) # 2
if norm_type == cv2.NORM_L2:
# FLANN parameters for float descriptors
FLANN_INDEX_KDTREE = 1
self.index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 4)
self.search_params = dict(checks=32) # or pass empty dictionary
self.matcher = cv2.FlannBasedMatcher(self.index_params, self.search_params)
self.matcher_name = 'FlannFeatureMatcher'
示例7: init_feature
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv2.SIFT()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.SURF(400)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB(400)
norm = cv2.NORM_HAMMING
else:
return None, None
if 'flann' in chunks:
if norm == cv2.NORM_L2:
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
else:
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
else:
matcher = cv2.BFMatcher(norm)
return detector, matcher
示例8: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def __init__(self):
self.detector = cv2.ORB_create( nfeatures = 1000 )
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
self.targets = []
self.frame_points = []
示例9: init_feature
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv2.xfeatures2d.SIFT_create()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.xfeatures2d.SURF_create(800)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB_create(400)
norm = cv2.NORM_HAMMING
elif chunks[0] == 'akaze':
detector = cv2.AKAZE_create()
norm = cv2.NORM_HAMMING
elif chunks[0] == 'brisk':
detector = cv2.BRISK_create()
norm = cv2.NORM_HAMMING
else:
return None, None
if 'flann' in chunks:
if norm == cv2.NORM_L2:
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
else:
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
else:
matcher = cv2.BFMatcher(norm)
return detector, matcher
示例10: FlannMatch_SIFT
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def FlannMatch_SIFT(img1, img2):
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in xrange(len(matches))]
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7 * n.distance:
matchesMask[i] = [1, 0]
return (kp1, kp2, matches, matchesMask)
示例11: matchKeypoints
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
# compute the raw matches
flann = cv2.FlannBasedMatcher(index_params, search_params)
rawMatches = flann.knnMatch(featuresA, featuresB, k=2)
# perform Lowe's ratio test to get actual matches
matches = []
for m, n in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if m.distance < ratio * n.distance:
# here queryIdx corresponds to kpsA
# trainIdx corresponds to kpsB
matches.append((m.trainIdx, m.queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(
ptsB, ptsA, cv2.RANSAC, reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
else:
# otherwise, no homograpy could be computed
return None
示例12: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def __init__(self, templates, ratio=0.75):
self.templates = templates
self.ratio = ratio
flann_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
self.matcher = cv2.FlannBasedMatcher(flann_params, {})
self.pool = ThreadPool(processes=cv2.getNumberOfCPUs())
示例13: __setstate__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def __setstate__(self, state):
self.templates = state['templates']
self.ratio = state['ratio']
flann_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
self.matcher = cv2.FlannBasedMatcher(flann_params, {})
self.pool = ThreadPool(processes=1) # cv2.getNumberOfCPUs())
示例14: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def __init__(self):
# Use locality sensitive hashing algorithm
flann_params = dict(algorithm = 6, table_number = 6, key_size = 12, multi_probe_level = 1)
self.min_matches = 10
self.cur_target = namedtuple('Current', 'image, rect, keypoints, descriptors, data')
self.tracked_target = namedtuple('Tracked', 'target, points_prev, points_cur, H, quad')
self.feature_detector = cv2.ORB_create()
self.feature_detector.setMaxFeatures(1000)
self.feature_matcher = cv2.FlannBasedMatcher(flann_params, {})
self.tracking_targets = []
# Function to add a new target for tracking
示例15: find
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import FlannBasedMatcher [as 别名]
def find(search_file, image_file, threshold=None):
'''
param threshold are disabled in sift match.
'''
sch = _cv2open(search_file, 0)
img = _cv2open(image_file, 0)
kp_sch, des_sch = sift.detectAndCompute(sch, None)
kp_img, des_img = sift.detectAndCompute(img, None)
if len(kp_sch) < MIN_MATCH_COUNT or len(kp_img) < MIN_MATCH_COUNT:
return None
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des_sch, des_img, k=2)
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good) > MIN_MATCH_COUNT:
sch_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
img_pts = np.float32([kp_img[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(sch_pts, img_pts, cv2.RANSAC, 5.0)
# matchesMask = mask.ravel().tolist()
h, w = sch.shape
pts = np.float32([ [0, 0], [0, h-1], [w-1, h-1], [w-1, 0] ]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
lt, br = dst[0][0], dst[2][0]
return map(int, (lt[0]+w/2, lt[1]+h/2))
else:
return None