本文整理汇总了Python中cv2.BackgroundSubtractorMOG方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.BackgroundSubtractorMOG方法的具体用法?Python cv2.BackgroundSubtractorMOG怎么用?Python cv2.BackgroundSubtractorMOG使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.BackgroundSubtractorMOG方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def __init__(self, history = 200, nMixtures = 5, backgroundRatio = 0.7, noiseSigma = 15, learningRate = 0.7):
try:
import cv2
except ImportError:
raise ImportError("Cannot load OpenCV library which is required by SimpleCV")
return
if not hasattr(cv2, 'BackgroundSubtractorMOG'):
raise ImportError("A newer version of OpenCV is needed")
return
self.mError = False
self.mReady = False
self.mDiffImg = None
self.mColorImg = None
self.mBlobMaker = BlobMaker()
self.history = history
self.nMixtures = nMixtures
self.backgroundRatio = backgroundRatio
self.noiseSigma = noiseSigma
self.learningRate = learningRate
self.mBSMOG = cv2.BackgroundSubtractorMOG(history, nMixtures, backgroundRatio, noiseSigma)
示例2: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def __init__ ( self ):
super( BackgroundRemove, self ).__init__()
self._name = "Background Remove"
self._speed = 0.01
self._avg = None
self._fgbg = cv2.BackgroundSubtractorMOG()
示例3: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def __init__(self, history=10, numberMixtures=3, backgroundRatio=0.6, noise=20):
"""Init the color detector object.
@param history lenght of the history
@param numberMixtures The maximum number of Gaussian Mixture components allowed.
Each pixel in the scene is modelled by a mixture of K Gaussian distributions.
This value should be a small number from 3 to 5.
@param backgroundRation define a threshold which specifies if a component has to be included
into the foreground or not. It is the minimum fraction of the background model.
In other words, it is the minimum prior probability that the background is in the scene.
@param noise specifies the noise strenght
"""
self.BackgroundSubtractorMOG = cv2.BackgroundSubtractorMOG(history, numberMixtures, backgroundRatio, noise)
示例4: returnMask
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def returnMask(self, foreground_image):
"""Return the binary image after the detection process
@param foreground_image the frame to check
@param threshold the value used for filtering the pixels after the absdiff
"""
return self.BackgroundSubtractorMOG.apply(foreground_image)
示例5: background_subtraction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def background_subtraction(background_image, foreground_image):
"""Creates a binary image from a background subtraction of the foreground using cv2.BackgroundSubtractorMOG().
The binary image returned is a mask that should contain mostly foreground pixels.
The background image should be the same background as the foreground image except not containing the object
of interest.
Images must be of the same size and type.
If not, larger image will be taken and downsampled to smaller image size.
If they are of different types, an error will occur.
Inputs:
background_image = img object, RGB or binary/grayscale/single-channel
foreground_image = img object, RGB or binary/grayscale/single-channel
Returns:
fgmask = background subtracted foreground image (mask)
:param background_image: numpy.ndarray
:param foreground_image: numpy.ndarray
:return fgmask: numpy.ndarray
"""
params.device += 1
# Copying images to make sure not alter originals
bg_img = np.copy(background_image)
fg_img = np.copy(foreground_image)
# Checking if images need to be resized or error raised
if bg_img.shape != fg_img.shape:
# If both images are not 3 channel or single channel then raise error.
if len(bg_img.shape) != len(fg_img.shape):
fatal_error("Images must both be single-channel/grayscale/binary or RGB")
# Forcibly resizing largest image to smallest image
print("WARNING: Images are not of same size.\nResizing")
if bg_img.shape > fg_img.shape:
width, height = fg_img.shape[1], fg_img.shape[0]
bg_img = cv2.resize(bg_img, (width, height), interpolation=cv2.INTER_AREA)
else:
width, height = bg_img.shape[1], bg_img.shape[0]
fg_img = cv2.resize(fg_img, (width, height), interpolation=cv2.INTER_AREA)
bgsub = cv2.createBackgroundSubtractorMOG2()
# Applying the background image to the background subtractor first.
# Anything added after is subtracted from the previous iterations.
_ = bgsub.apply(bg_img)
# Applying the foreground image to the background subtractor (therefore removing the background)
fgmask = bgsub.apply(fg_img)
# Debug options
if params.debug == "print":
print_image(fgmask, os.path.join(params.debug_outdir, str(params.device) + "_background_subtraction.png"))
elif params.debug == "plot":
plot_image(fgmask, cmap="gray")
return fgmask
示例6: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BackgroundSubtractorMOG [as 别名]
def __init__(self, debug = False):
self.capture = cv2.VideoCapture(0)
if self.capture.isOpened(): # Checks the stream
self.frameSize = (int(self.capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)),
int(self.capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)))
Constants.SCREEN_HEIGHT = self.frameSize[0]
Constants.SCREEN_WIDTH = self.frameSize[1]
self.bsmog = []
self.bgAdapt = []
history = 100
nGauss = 20
bgThresh = 0.2
noise = 7
for i in range(0,4):
#self.bsmog.append(cv2.BackgroundSubtractorMOG())
self.bsmog.append(cv2.BackgroundSubtractorMOG(history,nGauss,bgThresh,noise))
self.bgAdapt.append(Constants.BG_ADAPT)
self.debug = debug
self.debugWindow0 = "Debug Window 0"
self.debugWindow1 = "Debug Window 1"
self.debugWindow2 = "Debug Window 2"
self.debugWindow3 = "Debug Window 3"
self.debugWindow4 = "Debug Window 4"
self.debugWindow5 = "Debug Window 5"
if self.debug:
cv2.namedWindow(self.debugWindow0)
cv2.namedWindow(self.debugWindow1)
cv2.namedWindow(self.debugWindow2)
cv2.namedWindow(self.debugWindow3)
cv2.namedWindow(self.debugWindow4)
cv2.namedWindow(self.debugWindow5)
result, self.currentFrame = self.capture.read()
self.currentFrame = cv2.flip(self.currentFrame, 1)
self.previousState = []
self.currentState = []
for i in range(0,4):
self.saveBackground(self.currentFrame, i)
self.previousState.append(False)
self.currentState.append(False)
self.t = False