当前位置: 首页>>代码示例>>Python>>正文


Python cupy.ascontiguousarray方法代码示例

本文整理汇总了Python中cupy.ascontiguousarray方法的典型用法代码示例。如果您正苦于以下问题:Python cupy.ascontiguousarray方法的具体用法?Python cupy.ascontiguousarray怎么用?Python cupy.ascontiguousarray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cupy的用法示例。


在下文中一共展示了cupy.ascontiguousarray方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _call_nms_kernel

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _call_nms_kernel(bbox, thresh):
    assert False, "Not supported."
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel')
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
开发者ID:pfnet-research,项目名称:chainer-compiler,代码行数:20,代码来源:non_maximum_suppression.py

示例2: _call_nms_kernel

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _call_nms_kernel(bbox, thresh):
    # PyTorch does not support unsigned long Tensor.
    # Doesn't matter,since it returns ndarray finally.
    # So I'll keep it unmodified.
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = _load_kernel('nms_kernel', _nms_gpu_code)
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
开发者ID:FederatedAI,项目名称:FATE,代码行数:22,代码来源:non_maximum_suppression.py

示例3: _call_nms_kernel

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _call_nms_kernel(bbox, thresh):
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel')
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
开发者ID:chainer,项目名称:chainercv,代码行数:19,代码来源:non_maximum_suppression.py

示例4: _voxelize_sub2

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _voxelize_sub2(faces, size):
    bs, nf = faces.shape[:2]
    faces = cp.ascontiguousarray(faces)
    voxels = cp.zeros((faces.shape[0], size, size, size), 'int32')
    chainer.cuda.elementwise(
        'int32 j, raw T faces, raw int32 bs, raw int32 nf, raw int32 vs',
        'raw int32 voxels',
        '''
            int fn = j % nf;
            int bn = j / nf;
            float* face = &faces[(bn * nf + fn) * 9];
            for (int k = 0; k < 3; k++) {
                int yi = face[3 * k + 0];
                int xi = face[3 * k + 1];
                int zi = face[3 * k + 2];
                if ((0 <= yi) && (yi < vs) && (0 <= xi) && (xi < vs) && (0 <= zi) && (zi < vs))
                    voxels[bn * vs * vs * vs + yi * vs * vs + xi * vs + zi] = 1;
            }
        ''',
        'function',
    )(cp.arange(bs * nf).astype('int32'), faces, bs, nf, size, voxels)
    return voxels 
开发者ID:hiroharu-kato,项目名称:mesh_reconstruction,代码行数:24,代码来源:voxelization.py

示例5: get_pointer

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def get_pointer(v):
    def p(e):
        return ctypes.c_void_p(e.data.ptr)
    if not v.flags.c_contiguous:
        c = cp.ascontiguousarray(v)
        return p(c), c
    return p(v) 
开发者ID:wkcn,项目名称:MobulaOP,代码行数:9,代码来源:cp.py

示例6: _check_size_footprint_structure

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _check_size_footprint_structure(ndim, size, footprint, structure,
                                    stacklevel=3, force_footprint=False):
    if structure is None and footprint is None:
        if size is None:
            raise RuntimeError("no footprint or filter size provided")
        sizes = _fix_sequence_arg(size, ndim, 'size', int)
        if force_footprint:
            return None, cupy.ones(sizes, bool), None
        return sizes, None, None
    if size is not None:
        warnings.warn("ignoring size because {} is set".format(
            'structure' if footprint is None else 'footprint'),
            UserWarning, stacklevel=stacklevel+1)

    if footprint is not None:
        footprint = cupy.array(footprint, bool, True, 'C')
        if not footprint.any():
            raise ValueError("all-zero footprint is not supported")

    if structure is None:
        if not force_footprint and footprint.all():
            return footprint.shape, None, None
        return None, footprint, None

    structure = cupy.ascontiguousarray(structure)
    if footprint is None:
        footprint = cupy.ones(structure.shape, bool)
    return None, footprint, structure 
开发者ID:cupy,项目名称:cupy,代码行数:30,代码来源:filters.py

示例7: _call_kernel

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _call_kernel(kernel, input, weights, output, structure=None,
                 weights_dtype=cupy.float64, structure_dtype=cupy.float64):
    """
    Calls a constructed ElementwiseKernel. The kernel must take an input image,
    an optional array of weights, an optional array for the structure, and an
    output array.

    weights and structure can be given as None (structure defaults to None) in
    which case they are not passed to the kernel at all. If the output is given
    as None then it will be allocated in this function.

    This function deals with making sure that the weights and structure are
    contiguous and float64 (or bool for weights that are footprints)*, that the
    output is allocated and appriopately shaped. This also deals with the
    situation that the input and output arrays overlap in memory.

    * weights is always cast to float64 or bool in order to get an output
    compatible with SciPy, though float32 might be sufficient when input dtype
    is low precision. If weights_dtype is passed as weights.dtype then no
    dtype conversion will occur. The input and output are never converted.
    """
    args = [input]
    if weights is not None:
        weights = cupy.ascontiguousarray(weights, weights_dtype)
        args.append(weights)
    if structure is not None:
        structure = cupy.ascontiguousarray(structure, structure_dtype)
        args.append(structure)
    output = _get_output(output, input)
    needs_temp = cupy.shares_memory(output, input, 'MAY_SHARE_BOUNDS')
    if needs_temp:
        output, temp = _get_output(output.dtype, input), output
    args.append(output)
    kernel(*args)
    if needs_temp:
        temp[...] = output[...]
        output = temp
    return output 
开发者ID:cupy,项目名称:cupy,代码行数:40,代码来源:filters.py

示例8: test_ascontiguousarray_on_noncontiguous_array

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def test_ascontiguousarray_on_noncontiguous_array(self):
        a = testing.shaped_arange((2, 3, 4))
        b = a.transpose(2, 0, 1)
        c = cupy.ascontiguousarray(b)
        assert c.flags.c_contiguous
        testing.assert_array_equal(b, c) 
开发者ID:cupy,项目名称:cupy,代码行数:8,代码来源:test_from_data.py

示例9: test_ascontiguousarray_on_contiguous_array

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def test_ascontiguousarray_on_contiguous_array(self):
        a = testing.shaped_arange((2, 3, 4))
        b = cupy.ascontiguousarray(a)
        assert a is b 
开发者ID:cupy,项目名称:cupy,代码行数:6,代码来源:test_from_data.py

示例10: test_asarray_cuda_array_zero_dim

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def test_asarray_cuda_array_zero_dim(self, xp):
        a = xp.ones(())
        return xp.ascontiguousarray(a) 
开发者ID:cupy,项目名称:cupy,代码行数:5,代码来源:test_from_data.py

示例11: _fftn

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def _fftn(a, s, axes, norm, direction, value_type='C2C', order='A', plan=None,
          overwrite_x=False, out=None):
    if norm not in (None, 'ortho'):
        raise ValueError('Invalid norm value %s, should be None or "ortho".'
                         % norm)

    axes, axes_sorted = _prep_fftn_axes(a.ndim, s, axes, value_type)
    if not axes_sorted:
        if value_type == 'C2C':
            return a
        else:
            raise IndexError('list index out of range')
    a = _convert_dtype(a, value_type)

    if order == 'A':
        if a.flags.f_contiguous:
            order = 'F'
        elif a.flags.c_contiguous:
            order = 'C'
        else:
            a = cupy.ascontiguousarray(a)
            order = 'C'
    elif order not in ['C', 'F']:
        raise ValueError('Unsupported order: {}'.format(order))

    # Note: need to call _cook_shape prior to sorting the axes
    a = _cook_shape(a, s, axes, value_type, order=order)

    if order == 'C' and not a.flags.c_contiguous:
        a = cupy.ascontiguousarray(a)
    elif order == 'F' and not a.flags.f_contiguous:
        a = cupy.asfortranarray(a)

    # _cook_shape tells us input shape only, and not output shape
    out_size = _get_fftn_out_size(a.shape, s, axes_sorted[-1], value_type)

    a = _exec_fftn(a, direction, value_type, norm=norm, axes=axes_sorted,
                   overwrite_x=overwrite_x, plan=plan, out=out,
                   out_size=out_size)
    return a 
开发者ID:cupy,项目名称:cupy,代码行数:42,代码来源:fft.py

示例12: reduced_binary_einsum

# 需要导入模块: import cupy [as 别名]
# 或者: from cupy import ascontiguousarray [as 别名]
def reduced_binary_einsum(arr0, sub0, arr1, sub1, sub_others):
    set0 = set(sub0)
    set1 = set(sub1)
    assert len(set0) == len(sub0), 'operand 0 should be reduced: diagonal'
    assert len(set1) == len(sub1), 'operand 1 should be reduced: diagonal'

    if len(sub0) == 0 or len(sub1) == 0:
        return arr0 * arr1, sub0 + sub1

    set_others = set(sub_others)
    shared = set0 & set1
    batch_dims = shared & set_others
    contract_dims = shared - batch_dims

    bs0, cs0, ts0 = _make_transpose_axes(sub0, batch_dims, contract_dims)
    bs1, cs1, ts1 = _make_transpose_axes(sub1, batch_dims, contract_dims)

    sub_b = [sub0[axis] for axis in bs0]
    assert sub_b == [sub1[axis] for axis in bs1]
    sub_l = [sub0[axis] for axis in ts0]
    sub_r = [sub1[axis] for axis in ts1]

    sub_out = sub_b + sub_l + sub_r
    assert set(sub_out) <= set_others, 'operands should be reduced: unary sum'

    if len(contract_dims) == 0:
        # Use element-wise multiply when no contraction is needed
        if len(sub_out) == len(sub_others):
            # to assure final output of einsum is C-contiguous
            sub_out = sub_others
        arr0 = _expand_dims_transpose(arr0, sub0, sub_out)
        arr1 = _expand_dims_transpose(arr1, sub1, sub_out)
        return arr0 * arr1, sub_out

    if _use_cutensor(arr0.dtype, sub0, arr1.dtype, sub1,
                     batch_dims, contract_dims):
        if len(sub_out) == len(sub_others):
            # to assure final output of einsum is C-contiguous
            sub_out = sub_others
        out_shape = _get_out_shape(arr0.shape, sub0, arr1.shape, sub1, sub_out)
        arr_out = cupy.empty(out_shape, arr0.dtype)
        arr0 = cupy.ascontiguousarray(arr0)
        arr1 = cupy.ascontiguousarray(arr1)
        desc_0 = cutensor.create_tensor_descriptor(arr0)
        desc_1 = cutensor.create_tensor_descriptor(arr1)
        desc_out = cutensor.create_tensor_descriptor(arr_out)
        arr_out = cutensor.contraction(1.0,
                                       arr0, desc_0, sub0,
                                       arr1, desc_1, sub1,
                                       0.0,
                                       arr_out, desc_out, sub_out)
        return arr_out, sub_out

    tmp0, shapes0 = _flatten_transpose(arr0, [bs0, ts0, cs0])
    tmp1, shapes1 = _flatten_transpose(arr1, [bs1, cs1, ts1])
    shapes_out = shapes0[0] + shapes0[1] + shapes1[2]
    assert shapes0[0] == shapes1[0]
    arr_out = cupy.matmul(tmp0, tmp1).reshape(shapes_out)
    return arr_out, sub_out 
开发者ID:cupy,项目名称:cupy,代码行数:61,代码来源:einsum.py


注:本文中的cupy.ascontiguousarray方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。