本文整理汇总了Python中cryptography.hazmat.primitives.asymmetric.rsa.rsa_crt_iqmp方法的典型用法代码示例。如果您正苦于以下问题:Python rsa.rsa_crt_iqmp方法的具体用法?Python rsa.rsa_crt_iqmp怎么用?Python rsa.rsa_crt_iqmp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cryptography.hazmat.primitives.asymmetric.rsa
的用法示例。
在下文中一共展示了rsa.rsa_crt_iqmp方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: deserialize
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def deserialize(self, data):
pgp_key, _ = pgpy.PGPKey.from_blob(data)
password = ""
if self.password:
password = self.password
with pgp_key.unlock(password):
key_material = pgp_key._key.keymaterial
# https://tools.ietf.org/html/rfc4880#section-5.5.3
# "multiprecision integer (MPI) of RSA secret exponent d."
self._d = key_material.d
# "MPI of RSA secret prime value p."
self._p = key_material.p
# "MPI of RSA secret prime value q (p < q)."
self._q = key_material.q
self._iqmp = rsa.rsa_crt_iqmp(key_material.p, key_material.q)
self._dmp1 = rsa.rsa_crt_dmp1(key_material.d, key_material.q)
self._dmq1 = rsa.rsa_crt_dmq1(key_material.d, key_material.q)
self._public_numbers = ErisPublic(
e=key_material.e,
n=key_material.n)
示例2: test_privateBlobRSA
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def test_privateBlobRSA(self):
"""
L{keys.Key.privateBlob} returns the SSH protocol-level format of an
RSA private key.
"""
from cryptography.hazmat.primitives.asymmetric import rsa
numbers = self.rsaObj.private_numbers()
u = rsa.rsa_crt_iqmp(numbers.q, numbers.p)
self.assertEqual(
keys.Key(self.rsaObj).privateBlob(),
common.NS(b'ssh-rsa') +
common.MP(self.rsaObj.private_numbers().public_numbers.n) +
common.MP(self.rsaObj.private_numbers().public_numbers.e) +
common.MP(self.rsaObj.private_numbers().d) +
common.MP(u) +
common.MP(self.rsaObj.private_numbers().p) +
common.MP(self.rsaObj.private_numbers().q)
)
示例3: _generate
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def _generate(self, key_size):
if any(c != 0 for c in self): # pragma: no cover
raise PGPError("key is already populated")
# generate some big numbers!
pk = rsa.generate_private_key(65537, key_size, default_backend())
pkn = pk.private_numbers()
self.n = MPI(pkn.public_numbers.n)
self.e = MPI(pkn.public_numbers.e)
self.d = MPI(pkn.d)
self.p = MPI(pkn.p)
self.q = MPI(pkn.q)
# from the RFC:
# "- MPI of u, the multiplicative inverse of p, mod q."
# or, simply, p^-1 mod p
# rsa.rsa_crt_iqmp(p, q) normally computes q^-1 mod p,
# so if we swap the values around we get the answer we want
self.u = MPI(rsa.rsa_crt_iqmp(pkn.q, pkn.p))
del pkn
del pk
self._compute_chksum()
示例4: _process_jwk
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def _process_jwk(self, jwk_dict):
if not jwk_dict.get('kty') == 'RSA':
raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get('kty'))
e = base64_to_long(jwk_dict.get('e', 256))
n = base64_to_long(jwk_dict.get('n'))
public = rsa.RSAPublicNumbers(e, n)
if 'd' not in jwk_dict:
return public.public_key(self.cryptography_backend())
else:
# This is a private key.
d = base64_to_long(jwk_dict.get('d'))
extra_params = ['p', 'q', 'dp', 'dq', 'qi']
if any(k in jwk_dict for k in extra_params):
# Precomputed private key parameters are available.
if not all(k in jwk_dict for k in extra_params):
# These values must be present when 'p' is according to
# Section 6.3.2 of RFC7518, so if they are not we raise
# an error.
raise JWKError('Precomputed private key parameters are incomplete.')
p = base64_to_long(jwk_dict['p'])
q = base64_to_long(jwk_dict['q'])
dp = base64_to_long(jwk_dict['dp'])
dq = base64_to_long(jwk_dict['dq'])
qi = base64_to_long(jwk_dict['qi'])
else:
# The precomputed private key parameters are not available,
# so we use cryptography's API to fill them in.
p, q = rsa.rsa_recover_prime_factors(n, e, d)
dp = rsa.rsa_crt_dmp1(d, p)
dq = rsa.rsa_crt_dmq1(d, q)
qi = rsa.rsa_crt_iqmp(p, q)
private = rsa.RSAPrivateNumbers(p, q, d, dp, dq, qi, public)
return private.private_key(self.cryptography_backend())
示例5: __privkey__
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def __privkey__(self):
return rsa.RSAPrivateNumbers(self.p, self.q, self.d,
rsa.rsa_crt_dmp1(self.d, self.p),
rsa.rsa_crt_dmq1(self.d, self.q),
rsa.rsa_crt_iqmp(self.p, self.q),
rsa.RSAPublicNumbers(self.e, self.n)).private_key(default_backend())
示例6: serialize
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def serialize(self, name, comment, email):
rsa_priv = RSAPriv()
rsa_priv.e = MPI(self.public_numbers._e)
rsa_priv.n = MPI(self.public_numbers._n)
rsa_priv.d = MPI(self._d)
rsa_priv.p = MPI(self._p)
rsa_priv.q = MPI(self._q)
# https://github.com/SecurityInnovation/PGPy/blob/f08afed730816e71eafa0dd59ce77d8859ce24b5/pgpy/packet/fields.py#L1116
rsa_priv.u = MPI(rsa.rsa_crt_iqmp(self._q, self._p))
rsa_priv._compute_chksum()
pub_key_v4 = PrivKeyV4()
pub_key_v4.pkalg = PubKeyAlgorithm.RSAEncryptOrSign
pub_key_v4.keymaterial = rsa_priv
pub_key_v4.update_hlen()
pgp_key = pgpy.PGPKey()
pgp_key._key = pub_key_v4
uid = pgpy.PGPUID.new(name, comment=comment, email=email)
# FIXME: Should I add a "Signature" Packet?
# FIXME: Should I add subkeys?
pgp_key.add_uid(
uid,
usage={
KeyFlags.Sign,
KeyFlags.EncryptCommunications,
KeyFlags.EncryptStorage},
hashes=[
HashAlgorithm.SHA256,
HashAlgorithm.SHA384,
HashAlgorithm.SHA512,
HashAlgorithm.SHA224],
ciphers=[
SymmetricKeyAlgorithm.AES256,
SymmetricKeyAlgorithm.AES192,
SymmetricKeyAlgorithm.AES128],
compression=[
CompressionAlgorithm.ZLIB,
CompressionAlgorithm.BZ2,
CompressionAlgorithm.ZIP,
CompressionAlgorithm.Uncompressed])
if self.password:
pgp_key.protect(
self.password,
SymmetricKeyAlgorithm.AES256,
HashAlgorithm.SHA256)
return str(pgp_key)
示例7: _fromRSAComponents
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def _fromRSAComponents(cls, n, e, d=None, p=None, q=None, u=None):
"""
Build a key from RSA numerical components.
@type n: L{int}
@param n: The 'n' RSA variable.
@type e: L{int}
@param e: The 'e' RSA variable.
@type d: L{int} or L{None}
@param d: The 'd' RSA variable (optional for a public key).
@type p: L{int} or L{None}
@param p: The 'p' RSA variable (optional for a public key).
@type q: L{int} or L{None}
@param q: The 'q' RSA variable (optional for a public key).
@type u: L{int} or L{None}
@param u: The 'u' RSA variable. Ignored, as its value is determined by
p and q.
@rtype: L{Key}
@return: An RSA key constructed from the values as given.
"""
publicNumbers = rsa.RSAPublicNumbers(e=e, n=n)
if d is None:
# We have public components.
keyObject = publicNumbers.public_key(default_backend())
else:
privateNumbers = rsa.RSAPrivateNumbers(
p=p,
q=q,
d=d,
dmp1=rsa.rsa_crt_dmp1(d, p),
dmq1=rsa.rsa_crt_dmq1(d, q),
iqmp=rsa.rsa_crt_iqmp(p, q),
public_numbers=publicNumbers,
)
keyObject = privateNumbers.private_key(default_backend())
return cls(keyObject)
示例8: data
# 需要导入模块: from cryptography.hazmat.primitives.asymmetric import rsa [as 别名]
# 或者: from cryptography.hazmat.primitives.asymmetric.rsa import rsa_crt_iqmp [as 别名]
def data(self):
"""
Return the values of the public key as a dictionary.
@rtype: L{dict}
"""
if isinstance(self._keyObject, rsa.RSAPublicKey):
numbers = self._keyObject.public_numbers()
return {
"n": numbers.n,
"e": numbers.e,
}
elif isinstance(self._keyObject, rsa.RSAPrivateKey):
numbers = self._keyObject.private_numbers()
return {
"n": numbers.public_numbers.n,
"e": numbers.public_numbers.e,
"d": numbers.d,
"p": numbers.p,
"q": numbers.q,
# Use a trick: iqmp is q^-1 % p, u is p^-1 % q
"u": rsa.rsa_crt_iqmp(numbers.q, numbers.p),
}
elif isinstance(self._keyObject, dsa.DSAPublicKey):
numbers = self._keyObject.public_numbers()
return {
"y": numbers.y,
"g": numbers.parameter_numbers.g,
"p": numbers.parameter_numbers.p,
"q": numbers.parameter_numbers.q,
}
elif isinstance(self._keyObject, dsa.DSAPrivateKey):
numbers = self._keyObject.private_numbers()
return {
"x": numbers.x,
"y": numbers.public_numbers.y,
"g": numbers.public_numbers.parameter_numbers.g,
"p": numbers.public_numbers.parameter_numbers.p,
"q": numbers.public_numbers.parameter_numbers.q,
}
elif isinstance(self._keyObject, ec.EllipticCurvePublicKey):
numbers = self._keyObject.public_numbers()
return {
"x": numbers.x,
"y": numbers.y,
"curve": self.sshType(),
}
elif isinstance(self._keyObject, ec.EllipticCurvePrivateKey):
numbers = self._keyObject.private_numbers()
return {
"x": numbers.public_numbers.x,
"y": numbers.public_numbers.y,
"privateValue": numbers.private_value,
"curve": self.sshType(),
}
else:
raise RuntimeError("Unexpected key type: %s" % (self._keyObject,))