本文整理汇总了Python中core.loader.TestLoader方法的典型用法代码示例。如果您正苦于以下问题:Python loader.TestLoader方法的具体用法?Python loader.TestLoader怎么用?Python loader.TestLoader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类core.loader
的用法示例。
在下文中一共展示了loader.TestLoader方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
key_sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
cur_sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
key_sym = key_sym_instance.get_key_test_symbol(cfg)
cur_sym = cur_sym_instance.get_cur_test_symbol(cfg)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
# get test data iter
# split roidbs
gpu_num = len(ctx)
roidbs = [[] for x in range(gpu_num)]
roidbs_seg_lens = np.zeros(gpu_num, dtype=np.int)
for x in roidb:
gpu_id = np.argmin(roidbs_seg_lens)
roidbs[gpu_id].append(x)
roidbs_seg_lens[gpu_id] += x['frame_seg_len']
# get test data iter
test_datas = [TestLoader(x, cfg, batch_size=1, shuffle=shuffle, has_rpn=has_rpn) for x in roidbs]
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# create predictor
key_predictors = [get_predictor(key_sym, key_sym_instance, cfg, arg_params, aux_params, test_datas[i], [ctx[i]]) for i in range(gpu_num)]
cur_predictors = [get_predictor(cur_sym, cur_sym_instance, cfg, arg_params, aux_params, test_datas[i], [ctx[i]]) for i in range(gpu_num)]
# start detection
#pred_eval(0, key_predictors[0], cur_predictors[0], test_datas[0], imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
pred_eval_multiprocess(gpu_num, key_predictors, cur_predictors, test_datas, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例2: test_net_thread
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_net_thread(imdb, mtcnn_detector):
test_data = TestLoader(imdb)
detections = mtcnn_detector.detect_face(imdb, test_data, vis=False, mode='train')
return detections
示例3: test_rpn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rpn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, shuffle, thresh, logger=None, output_path=None):
# set up logger
if not logger:
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# rpn generate proposal cfg
cfg.TEST.HAS_RPN = True
# print cfg
pprint.pprint(cfg)
logger.info('testing rpn cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol_rpn(cfg, is_train=False)
# load dataset and prepare imdb for training
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=True)
# load model
arg_params, aux_params = load_param(prefix, epoch)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
# check parameters
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data[0]]
label_names = None if test_data.provide_label[0] is None else [k[0] for k in test_data.provide_label[0]]
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# start testing
imdb_boxes = generate_proposals(predictor, test_data, imdb, cfg, vis=vis, thresh=thresh)
all_log_info = imdb.evaluate_recall(roidb, candidate_boxes=imdb_boxes)
logger.info(all_log_info)
示例4: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
if has_rpn:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
else:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol_rcnn(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
gt_roidb = imdb.gt_roidb()
roidb = eval('imdb.' + proposal + '_roidb')(gt_roidb)
# get test data iter
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=has_rpn)
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data_single]
label_names = None
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
if not has_rpn:
max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# start detection
pred_eval(predictor, test_data, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例5: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
if has_rpn:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
else:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol_rfcn(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
gt_roidb = imdb.gt_roidb()
roidb = eval('imdb.' + proposal + '_roidb')(gt_roidb)
# get test data iter
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=has_rpn)
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data_single]
label_names = None
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
if not has_rpn:
max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# start detection
pred_eval(predictor, test_data, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例6: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path, motion_iou_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None, enable_detailed_eval=True):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
feat_sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
aggr_sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
feat_sym = feat_sym_instance.get_feat_symbol(cfg)
aggr_sym = aggr_sym_instance.get_aggregation_symbol(cfg)
imdb = eval(dataset)(image_set, root_path, dataset_path, motion_iou_path, result_path=output_path, enable_detailed_eval=enable_detailed_eval)
roidb = imdb.gt_roidb()
# get test data iter
# split roidbs
gpu_num = len(ctx)
roidbs = [[] for x in range(gpu_num)]
roidbs_seg_lens = np.zeros(gpu_num, dtype=np.int)
for x in roidb:
gpu_id = np.argmin(roidbs_seg_lens)
roidbs[gpu_id].append(x)
roidbs_seg_lens[gpu_id] += x['frame_seg_len']
# get test data iter
test_datas = [TestLoader(x, cfg, batch_size=1, shuffle=shuffle, has_rpn=has_rpn) for x in roidbs]
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# create predictor
feat_predictors = [get_predictor(feat_sym, feat_sym_instance, cfg, arg_params, aux_params, test_datas[i], [ctx[i]]) for i in range(gpu_num)]
aggr_predictors = [get_predictor(aggr_sym, aggr_sym_instance, cfg, arg_params, aux_params, test_datas[i], [ctx[i]]) for i in range(gpu_num)]
# start detection
pred_eval_multiprocess(gpu_num, feat_predictors, aggr_predictors, test_datas, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例7: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_test_symbol(cfg)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
# get test data iter
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=has_rpn)
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data_single]
label_names = None
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
if not has_rpn:
max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# start detection
pred_eval(predictor, test_data, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例8: test_rcnn_poly
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn_poly(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, draw, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
if has_rpn:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
roidb = imdb.gt_roidb()
else:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol_rcnn(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
gt_roidb = imdb.gt_roidb()
roidb = eval('imdb.' + proposal + '_roidb')(gt_roidb)
# get test data iter
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=has_rpn)
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data_single]
label_names = None
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
if not has_rpn:
max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# ignore_cache = True
# start detection
if cfg.network.RRoI_REGRESSION:
pred_eval_dota_rotbox_Rroi(predictor, test_data, imdb, cfg, vis=False, draw=True, ignore_cache=ignore_cache,
thresh=thresh, logger=logger)
else:
# start detection
pred_eval_dota_rotbox(predictor, test_data, imdb, cfg, vis=vis, draw=draw, ignore_cache=ignore_cache, thresh=thresh, logger=logger)
示例9: test_rcnn
# 需要导入模块: from core import loader [as 别名]
# 或者: from core.loader import TestLoader [as 别名]
def test_rcnn(cfg, dataset, image_set, root_path, dataset_path,
ctx, prefix, epoch,
vis, ignore_cache, shuffle, has_rpn, proposal, thresh, logger=None, output_path=None):
if not logger:
assert False, 'require a logger'
# print cfg
pprint.pprint(cfg)
logger.info('testing cfg:{}\n'.format(pprint.pformat(cfg)))
# load symbol and testing data
if has_rpn:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol(cfg, is_train=False)
# imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
# imdb = eval(dataset)(image_set, root_path, '/data/ARD/test', result_path=output_path)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
# imdb = eval(dataset)(image_set, root_path, '/data/ARD/dota/dota1024/little/', result_path=output_path)
roidb = imdb.gt_roidb()
else:
sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
sym = sym_instance.get_symbol_rcnn(cfg, is_train=False)
imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=output_path)
gt_roidb = imdb.gt_roidb()
roidb = eval('imdb.' + proposal + '_roidb')(gt_roidb)
# get test data iter
test_data = TestLoader(roidb, cfg, batch_size=len(ctx), shuffle=shuffle, has_rpn=has_rpn)
print 'test_data size is :',test_data.size
# load model
arg_params, aux_params = load_param(prefix, epoch, process=True)
# infer shape
data_shape_dict = dict(test_data.provide_data_single)
sym_instance.infer_shape(data_shape_dict)
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False)
# decide maximum shape
data_names = [k[0] for k in test_data.provide_data_single]
label_names = None
max_data_shape = [[('data', (1, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]]
if not has_rpn:
max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))
# create predictor
predictor = Predictor(sym, data_names, label_names,
context=ctx, max_data_shapes=max_data_shape,
provide_data=test_data.provide_data, provide_label=test_data.provide_label,
arg_params=arg_params, aux_params=aux_params)
# start detection
pred_eval(predictor, test_data, imdb, cfg, vis=vis, ignore_cache=ignore_cache, thresh=thresh, logger=logger)