当前位置: 首页>>代码示例>>Python>>正文


Python config.grid方法代码示例

本文整理汇总了Python中config.grid方法的典型用法代码示例。如果您正苦于以下问题:Python config.grid方法的具体用法?Python config.grid怎么用?Python config.grid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在config的用法示例。


在下文中一共展示了config.grid方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setup_snapshot_image_grid

# 需要导入模块: import config [as 别名]
# 或者: from config import grid [as 别名]
def setup_snapshot_image_grid(G, training_set,
    size    = '1080p',      # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
    layout  = 'random'):    # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.

    # Select size.
    gw = 1; gh = 1
    if size == '1080p':
        gw = np.clip(1920 // G.output_shape[3], 3, 32)
        gh = np.clip(1080 // G.output_shape[2], 2, 32)
    if size == '4k':
        gw = np.clip(3840 // G.output_shape[3], 7, 32)
        gh = np.clip(2160 // G.output_shape[2], 4, 32)

    # Fill in reals and labels.
    reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
    labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
    masks = np.zeros([gw * gh] + [1, training_set.shape[-1], training_set.shape[-1]], dtype=training_set.dtype)
    for idx in range(gw * gh):
        x = idx % gw; y = idx // gw
        while True:
            real, label, mask = training_set.get_minibatch_np(1)
            if layout == 'row_per_class' and training_set.label_size > 0:
                if label[0, y % training_set.label_size] == 0.0:
                    continue
            reals[idx] = real[0]
            labels[idx] = label[0]
            masks[idx] = mask[0]
            break

    # Generate latents.
    latents = misc.random_latents(gw * gh, G)
    return (gw, gh), reals, labels, latents, masks

#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:37,代码来源:train.py

示例2: setup_snapshot_image_grid

# 需要导入模块: import config [as 别名]
# 或者: from config import grid [as 别名]
def setup_snapshot_image_grid(G, training_set,
    size    = '1080p',      # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
    layout  = 'random'):    # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.

    # Select size.
    gw = 1; gh = 1
    if size == '1080p':
        gw = np.clip(1920 // G.output_shape[3], 3, 32)
        gh = np.clip(1080 // G.output_shape[2], 2, 32)
    if size == '4k':
        gw = np.clip(3840 // G.output_shape[3], 7, 32)
        gh = np.clip(2160 // G.output_shape[2], 4, 32)

    # Fill in reals and labels.
    reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
    labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
    for idx in range(gw * gh):
        x = idx % gw; y = idx // gw
        while True:
            real, label = training_set.get_minibatch_np(1)
            if layout == 'row_per_class' and training_set.label_size > 0:
                if label[0, y % training_set.label_size] == 0.0:
                    continue
            reals[idx] = real[0]
            labels[idx] = label[0]
            break

    # Generate latents.
    latents = misc.random_latents(gw * gh, G)
    return (gw, gh), reals, labels, latents

#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks. 
开发者ID:SummitKwan,项目名称:transparent_latent_gan,代码行数:35,代码来源:train.py


注:本文中的config.grid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。