本文整理汇总了Python中config.config.batch_size方法的典型用法代码示例。如果您正苦于以下问题:Python config.batch_size方法的具体用法?Python config.batch_size怎么用?Python config.batch_size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类config.config
的用法示例。
在下文中一共展示了config.batch_size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def main(_):
if config.mode == "train":
train_entry(config)
elif config.mode == "data":
preproc(config)
elif config.mode == "debug":
config.batch_size = 2
config.num_steps = 32
config.val_num_batches = 2
config.checkpoint = 2
config.period = 1
train_entry(config)
elif config.mode == "test":
test_entry(config)
else:
print("Unknown mode")
exit(0)
示例2: main
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def main():
data_transformer = DataTransformer(config.dataset_path, use_cuda=config.use_cuda)
# define our models
vanilla_encoder = VanillaEncoder(vocab_size=data_transformer.vocab_size,
embedding_size=config.encoder_embedding_size,
output_size=config.encoder_output_size)
vanilla_decoder = VanillaDecoder(hidden_size=config.decoder_hidden_size,
output_size=data_transformer.vocab_size,
max_length=data_transformer.max_length,
teacher_forcing_ratio=config.teacher_forcing_ratio,
sos_id=data_transformer.SOS_ID,
use_cuda=config.use_cuda)
if config.use_cuda:
vanilla_encoder = vanilla_encoder.cuda()
vanilla_decoder = vanilla_decoder.cuda()
seq2seq = Seq2Seq(encoder=vanilla_encoder,
decoder=vanilla_decoder)
trainer = Trainer(seq2seq, data_transformer, config.learning_rate, config.use_cuda)
trainer.train(num_epochs=config.num_epochs, batch_size=config.batch_size, pretrained=False)
示例3: get_train_loader
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def get_train_loader(engine, dataset):
data_setting = {'img_root': config.img_root_folder,
'gt_root': config.gt_root_folder,
'train_source': config.train_source,
'eval_source': config.eval_source}
train_preprocess = TrainPre(config.image_mean, config.image_std,
config.target_size)
train_dataset = dataset(data_setting, "train", train_preprocess,
config.niters_per_epoch * config.batch_size)
train_sampler = None
is_shuffle = True
batch_size = config.batch_size
if engine.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
batch_size = config.batch_size // engine.world_size
is_shuffle = False
train_loader = data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=config.num_workers,
drop_last=True,
shuffle=is_shuffle,
pin_memory=True,
sampler=train_sampler)
return train_loader, train_sampler
示例4: __init__
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def __init__(self, sess):
self.sess = sess
self.step_size = FLAGS.step_size / 255.0
self.max_epsilon = FLAGS.max_epsilon / 255.0
# Prepare graph
batch_shape = [FLAGS.batch_size, 299, 299, 3]
self.x_input = tf.placeholder(tf.float32, shape=batch_shape)
x_max = tf.clip_by_value(self.x_input + self.max_epsilon, 0., 1.0)
x_min = tf.clip_by_value(self.x_input - self.max_epsilon, 0., 1.0)
self.y_input = tf.placeholder(tf.int64, shape=batch_shape[0])
i = tf.constant(0)
self.x_adv, _, _, _, _ = tf.while_loop(self.stop, self.graph,
[self.x_input, self.y_input, i, x_max, x_min])
self.restore()
示例5: perturb
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def perturb(self, images, labels):
batch_size = images.shape[0]
if batch_size < FLAGS.batch_size:
pad_num = FLAGS.batch_size - batch_size
pad_img = np.zeros([pad_num, 299, 299, 3])
images = np.concatenate([images, pad_img])
pad_label = np.zeros([pad_num])
labels = np.concatenate([labels, pad_label])
adv_images = sess.run(self.x_adv, feed_dict={self.x_input: images, self.y_input: labels})
return adv_images[:batch_size]
示例6: build_in_eval
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def build_in_eval():
with tf.Session() as sess:
model = Evaluator(sess)
df = PNGDataFlow(FLAGS.result_dir, FLAGS.test_list_filename, FLAGS.ground_truth_file,
img_num=FLAGS.img_num)
df = BatchData(df, FLAGS.batch_size, remainder=True)
df.reset_state()
avgMetric = AvgMetric(datashape=[len(FLAGS.test_networks)])
total_batch = df.ds.img_num / FLAGS.batch_size
for batch_index, (x_batch, y_batch, name_batch) in tqdm(enumerate(df), total=total_batch):
acc, pred = model.eval(x_batch, y_batch)
avgMetric.update(acc)
return 1 - avgMetric.get_status()
示例7: val
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def val(args):
list_threhold = [0.5]
model = getattr(models, config.model_name)()
if args.ckpt: model.load_state_dict(torch.load(args.ckpt, map_location='cpu')['state_dict'])
model = model.to(device)
criterion = nn.BCEWithLogitsLoss()
val_dataset = ECGDataset(data_path=config.train_data, train=False)
val_dataloader = DataLoader(val_dataset, batch_size=config.batch_size, num_workers=4)
for threshold in list_threhold:
val_loss, val_f1 = val_epoch(model, criterion, val_dataloader, threshold)
print('threshold %.2f val_loss:%0.3e val_f1:%.3f\n' % (threshold, val_loss, val_f1))
#提交结果使用
示例8: get_train_loader
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def get_train_loader(engine, dataset):
data_setting = {'train_root': config.train_root_folder,
'val_root': config.eval_root_folder,
'train_source': config.train_source,
'eval_source': config.eval_source}
train_preprocess = TrainPre(config.image_mean, config.image_std)
train_dataset = dataset(data_setting, "train", train_preprocess, \
config.batch_size * config.niters_per_epoch)
train_sampler = None
is_shuffle = True
batch_size = config.batch_size
if engine.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
batch_size = config.batch_size // engine.world_size
is_shuffle = False
# import pdb;pdb.set_trace()
train_loader = data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=config.num_workers,
drop_last=True,
shuffle=is_shuffle,
pin_memory=True,
sampler=train_sampler)
return train_loader, train_sampler
示例9: get_train_loader
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def get_train_loader(engine, dataset):
data_setting = {'img_root': config.img_root_folder,
'gt_root': config.gt_root_folder,
'train_source': config.train_source,
'eval_source': config.eval_source}
train_preprocess = TrainPre(config.image_mean, config.image_std,
config.target_size)
train_dataset = dataset(data_setting, "train", train_preprocess,
config.niters_per_epoch * config.batch_size)
train_sampler = None
is_shuffle = True
batch_size = config.batch_size
if engine.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
batch_size = config.batch_size // engine.world_size
is_shuffle = False
train_loader = data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=config.num_workers,
drop_last=False,
shuffle=is_shuffle,
pin_memory=True,
sampler=train_sampler)
return train_loader, train_sampler
示例10: get_train_loader
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def get_train_loader(engine, dataset):
data_setting = {'img_root': config.img_root_folder,
'gt_root': config.gt_root_folder,
'train_source': config.train_source,
'eval_source': config.eval_source}
train_preprocess = TrainPre(config.image_mean, config.image_std)
train_dataset = dataset(data_setting, "train", train_preprocess,
config.batch_size * config.niters_per_epoch)
train_sampler = None
is_shuffle = True
batch_size = config.batch_size
if engine.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
batch_size = config.batch_size // engine.world_size
is_shuffle = False
train_loader = data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=config.num_workers,
drop_last=True,
shuffle=is_shuffle,
pin_memory=True,
sampler=train_sampler)
return train_loader, train_sampler
示例11: __init__
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def __init__(self, npz_file, batch_size):
data = np.load(npz_file)
self.context_idxs = data["context_idxs"]
self.context_char_idxs = data["context_char_idxs"]
self.ques_idxs = data["ques_idxs"]
self.ques_char_idxs = data["ques_char_idxs"]
self.y1s = data["y1s"]
self.y2s = data["y2s"]
self.ids = data["ids"]
self.num = len(self.ids)
示例12: get_loader
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def get_loader(npz_file, batch_size):
dataset = SQuADDataset(npz_file, batch_size)
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=5,
collate_fn=collate)
return data_loader
示例13: test_entry
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def test_entry(config):
with open(config.dev_eval_file, "r") as fh:
dev_eval_file = json.load(fh)
dev_dataset = get_loader(config.dev_record_file, config.batch_size)
fn = os.path.join(config.save_dir, "model.pt")
model = torch.load(fn)
test(model, dev_dataset, dev_eval_file, 0)
示例14: train
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def train(self, num_epochs, batch_size, pretrained=False):
if pretrained:
self.load_model()
step = 0
for epoch in range(0, num_epochs):
mini_batches = self.data_transformer.mini_batches(batch_size=batch_size)
for input_batch, target_batch in mini_batches:
self.optimizer.zero_grad()
decoder_outputs, decoder_hidden = self.model(input_batch, target_batch)
# calculate the loss and back prop.
cur_loss = self.get_loss(decoder_outputs, target_batch[0])
# logging
step += 1
if step % 50 == 0:
print("Step:", step, "char-loss: ", cur_loss.data.numpy())
self.save_model()
cur_loss.backward()
# optimize
self.optimizer.step()
self.save_model()
示例15: train_entry
# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import batch_size [as 别名]
def train_entry(config):
from models import QANet
with open(config.word_emb_file, "rb") as fh:
word_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.char_emb_file, "rb") as fh:
char_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.dev_eval_file, "r") as fh:
dev_eval_file = json.load(fh)
print("Building model...")
train_dataset = get_loader(config.train_record_file, config.batch_size)
dev_dataset = get_loader(config.dev_record_file, config.batch_size)
lr = config.learning_rate
base_lr = 1
lr_warm_up_num = config.lr_warm_up_num
model = QANet(word_mat, char_mat).to(device)
ema = EMA(config.decay)
for name, param in model.named_parameters():
if param.requires_grad:
ema.register(name, param.data)
parameters = filter(lambda param: param.requires_grad, model.parameters())
optimizer = optim.Adam(lr=base_lr, betas=(0.9, 0.999), eps=1e-7, weight_decay=5e-8, params=parameters)
cr = lr / math.log2(lr_warm_up_num)
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda ee: cr * math.log2(ee + 1) if ee < lr_warm_up_num else lr)
best_f1 = 0
best_em = 0
patience = 0
unused = False
for iter in range(config.num_epoch):
train(model, optimizer, scheduler, train_dataset, dev_dataset, dev_eval_file, iter, ema)
ema.assign(model)
metrics = test(model, dev_dataset, dev_eval_file, (iter+1)*len(train_dataset))
dev_f1 = metrics["f1"]
dev_em = metrics["exact_match"]
if dev_f1 < best_f1 and dev_em < best_em:
patience += 1
if patience > config.early_stop:
break
else:
patience = 0
best_f1 = max(best_f1, dev_f1)
best_em = max(best_em, dev_em)
fn = os.path.join(config.save_dir, "model.pt")
torch.save(model, fn)
ema.resume(model)