当前位置: 首页>>代码示例>>Python>>正文


Python config.Config方法代码示例

本文整理汇总了Python中config.config.Config方法的典型用法代码示例。如果您正苦于以下问题:Python config.Config方法的具体用法?Python config.Config怎么用?Python config.Config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在config.config的用法示例。


在下文中一共展示了config.Config方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def evaluate(config:Config, model: NNCRF, batch_insts_ids, name:str, insts: List[Instance]):
    ## evaluation
    metrics = np.asarray([0, 0, 0], dtype=int)
    batch_id = 0
    batch_size = config.batch_size
    for batch in batch_insts_ids:
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) * batch_size]
        sorted_batch_insts = sorted(one_batch_insts, key=lambda inst: len(inst.input.words), reverse=True)
        batch_max_scores, batch_max_ids = model.decode(batch)
        metrics += eval.evaluate_num(sorted_batch_insts, batch_max_ids, batch[-2], batch[1], config.idx2labels)
        batch_id += 1
    p, total_predict, total_entity = metrics[0], metrics[1], metrics[2]
    precision = p * 1.0 / total_predict * 100 if total_predict != 0 else 0
    recall = p * 1.0 / total_entity * 100 if total_entity != 0 else 0
    fscore = 2.0 * precision * recall / (precision + recall) if precision != 0 or recall != 0 else 0
    print("[%s set] Precision: %.2f, Recall: %.2f, F1: %.2f" % (name, precision, recall,fscore), flush=True)
    return [precision, recall, fscore] 
开发者ID:allanj,项目名称:ner_with_dependency,代码行数:19,代码来源:main.py

示例2: get_optimizer

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def get_optimizer(config: Config, model: nn.Module):
    params = model.parameters()
    if config.optimizer.lower() == "sgd":
        print(colored("Using SGD: lr is: {}, L2 regularization is: {}".format(config.learning_rate, config.l2), 'yellow'))
        return optim.SGD(params, lr=config.learning_rate, weight_decay=float(config.l2))
    elif config.optimizer.lower() == "adam":
        print(colored("Using Adam", 'yellow'))
        return optim.Adam(params)
    else:
        print("Illegal optimizer: {}".format(config.optimizer))
        exit(1) 
开发者ID:allanj,项目名称:ner_with_dependency,代码行数:13,代码来源:main.py

示例3: batching_list_instances

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def batching_list_instances(config: Config, insts:List[Instance]):
    train_num = len(insts)
    batch_size = config.batch_size
    total_batch = train_num // batch_size + 1 if train_num % batch_size != 0 else train_num // batch_size
    batched_data = []
    for batch_id in range(total_batch):
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) * batch_size]
        batched_data.append(simple_batching(config, one_batch_insts))

    return batched_data 
开发者ID:allanj,项目名称:ner_with_dependency,代码行数:12,代码来源:main.py

示例4: test_model

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def test_model(config: Config, test_insts):
    dep_model_name = config.dep_model.name
    if config.dep_model == DepModelType.dggcn:
        dep_model_name += '(' + str(config.num_gcn_layers) + ","+str(config.gcn_dropout)+ ","+str(config.gcn_mlp_layers)+")"
    model_name = "model_files/lstm_{}_{}_crf_{}_{}_{}_dep_{}_elmo_{}_{}_gate_{}_epoch_{}_lr_{}_comb_{}.m".format(config.num_lstm_layer, config.hidden_dim,
                                                                                                                                      config.dataset, config.affix,
                                                                                                                                      config.train_num,
                                                                                                                                      dep_model_name,
                                                                                                                                      config.context_emb.name,
                                                                                                                                      config.optimizer.lower(),
                                                                                                                                      config.edge_gate,
                                                                                                                                      config.num_epochs,
                                                                                                                                      config.learning_rate, config.interaction_func)
    res_name = "results/lstm_{}_{}_crf_{}_{}_{}_dep_{}_elmo_{}_{}_gate_{}_epoch_{}_lr_{}_comb_{}.results".format(config.num_lstm_layer, config.hidden_dim,
                                                                                                                                      config.dataset, config.affix,
                                                                                                                                      config.train_num,
                                                                                                                                      dep_model_name,
                                                                                                                                      config.context_emb.name,
                                                                                                                                      config.optimizer.lower(),
                                                                                                                                      config.edge_gate,
                                                                                                                                      config.num_epochs,
                                                                                                                                      config.learning_rate, config.interaction_func)
    model = NNCRF(config)
    model.load_state_dict(torch.load(model_name))
    model.eval()
    test_batches = batching_list_instances(config, test_insts)
    evaluate(config, model, test_batches, "test", test_insts)
    write_results(res_name, test_insts) 
开发者ID:allanj,项目名称:ner_with_dependency,代码行数:30,代码来源:main.py

示例5: get_attr

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def get_attr(attr_key: str):
    """
    Helper method for getting values from config override or config template.
    """
    if not hasattr(ConfigOverride.Config, attr_key):
        return getattr(config_template.Config, attr_key)

    return getattr(ConfigOverride.Config, attr_key) 
开发者ID:Toaster192,项目名称:rubbergod,代码行数:10,代码来源:app_config.py

示例6: main

# 需要导入模块: from config import config [as 别名]
# 或者: from config.config import Config [as 别名]
def main():
    parser = argparse.ArgumentParser(description="Dependency-Guided LSTM CRF implementation")
    opt = parse_arguments(parser)
    conf = Config(opt)

    reader = Reader(conf.digit2zero)
    setSeed(opt, conf.seed)

    trains = reader.read_conll(conf.train_file, -1, True)
    devs = reader.read_conll(conf.dev_file, conf.dev_num, False)
    tests = reader.read_conll(conf.test_file, conf.test_num, False)

    if conf.context_emb != ContextEmb.none:
        print('Loading the {} vectors for all datasets.'.format(conf.context_emb.name))
        conf.context_emb_size = reader.load_elmo_vec(conf.train_file.replace(".sd", "").replace(".ud", "").replace(".sud", "").replace(".predsd", "").replace(".predud", "").replace(".stud", "").replace(".ssd", "") + "."+conf.context_emb.name+".vec", trains)
        reader.load_elmo_vec(conf.dev_file.replace(".sd", "").replace(".ud", "").replace(".sud", "").replace(".predsd", "").replace(".predud", "").replace(".stud", "").replace(".ssd", "")  + "."+conf.context_emb.name+".vec", devs)
        reader.load_elmo_vec(conf.test_file.replace(".sd", "").replace(".ud", "").replace(".sud", "").replace(".predsd", "").replace(".predud", "").replace(".stud", "").replace(".ssd", "")  + "."+conf.context_emb.name+".vec", tests)

    conf.use_iobes(trains + devs + tests)
    conf.build_label_idx(trains)

    conf.build_deplabel_idx(trains + devs + tests)
    print("# deplabels: ", len(conf.deplabels))
    print("dep label 2idx: ", conf.deplabel2idx)


    conf.build_word_idx(trains, devs, tests)
    conf.build_emb_table()
    conf.map_insts_ids(trains + devs + tests)


    print("num chars: " + str(conf.num_char))
    # print(str(config.char2idx))

    print("num words: " + str(len(conf.word2idx)))
    # print(config.word2idx)
    if opt.mode == "train":
        if conf.train_num != -1:
            random.shuffle(trains)
            trains = trains[:conf.train_num]
        learn_from_insts(conf, conf.num_epochs, trains, devs, tests)
    else:
        ## Load the trained model.
        test_model(conf, tests)
        # pass

    print(opt.mode) 
开发者ID:allanj,项目名称:ner_with_dependency,代码行数:49,代码来源:main.py


注:本文中的config.config.Config方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。