当前位置: 首页>>代码示例>>Python>>正文


Python cfg.epoch方法代码示例

本文整理汇总了Python中config.cfg.epoch方法的典型用法代码示例。如果您正苦于以下问题:Python cfg.epoch方法的具体用法?Python cfg.epoch怎么用?Python cfg.epoch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在config.cfg的用法示例。


在下文中一共展示了cfg.epoch方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from config import cfg [as 别名]
# 或者: from config.cfg import epoch [as 别名]
def main(_):
	
	# get dataset info
	result = create_image_lists(cfg.images)
	max_iters = len(result["train"]) * cfg.epoch // cfg.batch_size
	
	tf.logging.info('Loading Graph...')
	model = DFN(max_iters, batch_size=cfg.batch_size, init_lr=cfg.init_lr, power=cfg.power, momentum=cfg.momentum, stddev=cfg.stddev, regularization_scale=cfg.regularization_scale, alpha=cfg.alpha, gamma=cfg.gamma, fl_weight=cfg.fl_weight)
	tf.logging.info('Graph loaded.')
	
	if cfg.is_training:
		
		if not tf.gfile.Exists(cfg.logdir):
			
			tf.gfile.MakeDirs(cfg.logdir)
		
		if not tf.gfile.Exists(cfg.models):
			
			tf.gfile.MakeDirs(cfg.models)
		
		if os.path.exists(cfg.log):
			
			os.remove(cfg.log)
		
		fd = open(cfg.log, "a")
		tf.logging.info('Start training...')
		fd.write('Start training...\n')
		train(result, model, cfg.logdir, cfg.train_sum_freq, cfg.val_sum_freq, cfg.save_freq, cfg.models, fd)
		tf.logging.info('Training done.')
		fd.write('Training done.')
		fd.close()
	
	else:
		
		if not tf.gfile.Exists(cfg.test_outputs):
			
			tf.gfile.MakeDirs(cfg.test_outputs)
		
		tf.logging.info('Start testing...')
		test(result, model, cfg.models, cfg.test_outputs)
		tf.logging.info('Testing done.') 
开发者ID:YuhuiMa,项目名称:DFN-tensorflow,代码行数:43,代码来源:main.py

示例2: train

# 需要导入模块: from config import cfg [as 别名]
# 或者: from config.cfg import epoch [as 别名]
def train(model, supervisor, num_label):
    trX, trY, num_tr_batch, valX, valY, num_val_batch = load_data(cfg.dataset, cfg.batch_size, is_training=True)
    Y = valY[:num_val_batch * cfg.batch_size].reshape((-1, 1))

    fd_train_acc, fd_loss, fd_val_acc = save_to()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with supervisor.managed_session(config=config) as sess:
        print("\nNote: all of results will be saved to directory: " + cfg.results)
        for epoch in range(cfg.epoch):
            print('Training for epoch ' + str(epoch) + '/' + str(cfg.epoch) + ':')
            if supervisor.should_stop():
                print('supervisor stoped!')
                break
            for step in tqdm(range(num_tr_batch), total=num_tr_batch, ncols=70, leave=False, unit='b'):
                start = step * cfg.batch_size
                end = start + cfg.batch_size
                global_step = epoch * num_tr_batch + step

                if global_step % cfg.train_sum_freq == 0:
                    _, loss, train_acc, summary_str = sess.run([model.train_op, model.total_loss, model.accuracy, model.train_summary])
                    assert not np.isnan(loss), 'Something wrong! loss is nan...'
                    supervisor.summary_writer.add_summary(summary_str, global_step)

                    fd_loss.write(str(global_step) + ',' + str(loss) + "\n")
                    fd_loss.flush()
                    fd_train_acc.write(str(global_step) + ',' + str(train_acc / cfg.batch_size) + "\n")
                    fd_train_acc.flush()
                else:
                    sess.run(model.train_op)

                if cfg.val_sum_freq != 0 and (global_step) % cfg.val_sum_freq == 0:
                    val_acc = 0
                    for i in range(num_val_batch):
                        start = i * cfg.batch_size
                        end = start + cfg.batch_size
                        acc = sess.run(model.accuracy, {model.X: valX[start:end], model.labels: valY[start:end]})
                        val_acc += acc
                    val_acc = val_acc / (cfg.batch_size * num_val_batch)
                    fd_val_acc.write(str(global_step) + ',' + str(val_acc) + '\n')
                    fd_val_acc.flush()

            if (epoch + 1) % cfg.save_freq == 0:
                supervisor.saver.save(sess, cfg.logdir + '/model_epoch_%04d_step_%02d' % (epoch, global_step))

        fd_val_acc.close()
        fd_train_acc.close()
        fd_loss.close() 
开发者ID:bourdakos1,项目名称:capsule-networks,代码行数:50,代码来源:main.py

示例3: train

# 需要导入模块: from config import cfg [as 别名]
# 或者: from config.cfg import epoch [as 别名]
def train(model, supervisor, num_label):
    trX, trY, num_tr_batch, valX, valY, num_val_batch = load_data(cfg.dataset, cfg.batch_size, is_training=True)
    Y = valY[:num_val_batch * cfg.batch_size].reshape((-1, 1))

    fd_train_acc, fd_loss, fd_val_acc = save_to()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with supervisor.managed_session(config=config) as sess:
        print("\nNote: all of results will be saved to directory: " + cfg.results)
        for epoch in range(cfg.epoch):
            print("Training for epoch %d/%d:" % (epoch, cfg.epoch))
            if supervisor.should_stop():
                print('supervisor stoped!')
                break
            for step in tqdm(range(num_tr_batch), total=num_tr_batch, ncols=70, leave=False, unit='b'):
                start = step * cfg.batch_size
                end = start + cfg.batch_size
                global_step = epoch * num_tr_batch + step

                if global_step % cfg.train_sum_freq == 0:
                    _, loss, train_acc, summary_str = sess.run([model.train_op, model.total_loss, model.accuracy, model.train_summary])
                    assert not np.isnan(loss), 'Something wrong! loss is nan...'
                    supervisor.summary_writer.add_summary(summary_str, global_step)

                    fd_loss.write(str(global_step) + ',' + str(loss) + "\n")
                    fd_loss.flush()
                    fd_train_acc.write(str(global_step) + ',' + str(train_acc / cfg.batch_size) + "\n")
                    fd_train_acc.flush()
                else:
                    sess.run(model.train_op)

                if cfg.val_sum_freq != 0 and (global_step) % cfg.val_sum_freq == 0:
                    val_acc = 0
                    for i in range(num_val_batch):
                        start = i * cfg.batch_size
                        end = start + cfg.batch_size
                        acc = sess.run(model.accuracy, {model.X: valX[start:end], model.labels: valY[start:end]})
                        val_acc += acc
                    val_acc = val_acc / (cfg.batch_size * num_val_batch)
                    fd_val_acc.write(str(global_step) + ',' + str(val_acc) + '\n')
                    fd_val_acc.flush()

            if (epoch + 1) % cfg.save_freq == 0:
                supervisor.saver.save(sess, cfg.logdir + '/model_epoch_%04d_step_%02d' % (epoch, global_step))

        fd_val_acc.close()
        fd_train_acc.close()
        fd_loss.close() 
开发者ID:naturomics,项目名称:CapsNet-Tensorflow,代码行数:50,代码来源:main.py


注:本文中的config.cfg.epoch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。