本文整理汇总了Python中collections.Sequence方法的典型用法代码示例。如果您正苦于以下问题:Python collections.Sequence方法的具体用法?Python collections.Sequence怎么用?Python collections.Sequence使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类collections
的用法示例。
在下文中一共展示了collections.Sequence方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: aggregate_output
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def aggregate_output(self):
"""Given a list of predictions from net, make a decision based on aggreagation rule"""
if isinstance(self.predictions, collections.Sequence):
logits = []
for pred in self.predictions:
logit = self.net.apply_argmax_softmax(pred).unsqueeze(0)
logits.append(logit)
logits = torch.cat(logits, 0)
if self.aggregation == 'max':
self.pred = logits.data.max(0)[0].max(1)
elif self.aggregation == 'mean':
self.pred = logits.data.mean(0).max(1)
elif self.aggregation == 'weighted_mean':
self.pred = (self.aggregation_weight.expand_as(logits) * logits).data.mean(0).max(1)
elif self.aggregation == 'idx':
self.pred = logits[self.aggregation_param].data.max(1)
else:
# Apply a softmax and return a segmentation map
self.logits = self.net.apply_argmax_softmax(self.predictions)
self.pred = self.logits.data.max(1)
示例2: __call__
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def __call__(self, image):
if isinstance(self.sigma, collections.Sequence):
sigma = random_num_generator(
self.sigma, random_state=self.random_state)
else:
sigma = self.sigma
if isinstance(self.mean, collections.Sequence):
mean = random_num_generator(
self.mean, random_state=self.random_state)
else:
mean = self.mean
row, col, ch = image.shape
gauss = self.random_state.normal(mean, sigma, (row, col, ch))
gauss = gauss.reshape(row, col, ch)
image += image * gauss
return image
示例3: to_tensor
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError('type {} cannot be converted to tensor.'.format(
type(data)))
示例4: normalize
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def normalize(tensor, mean, std):
"""Normalize a tensor image with mean and standard deviation.
.. note::
This transform acts in-place, i.e., it mutates the input tensor.
See :class:`~torchvision.transforms.Normalize` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# This is faster than using broadcasting, don't change without benchmarking
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
示例5: __init__
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def __init__( self, exprs, savelist = False ):
super(ParseExpression,self).__init__(savelist)
if isinstance( exprs, _generatorType ):
exprs = list(exprs)
if isinstance( exprs, basestring ):
self.exprs = [ Literal( exprs ) ]
elif isinstance( exprs, collections.Sequence ):
# if sequence of strings provided, wrap with Literal
if all(isinstance(expr, basestring) for expr in exprs):
exprs = map(Literal, exprs)
self.exprs = list(exprs)
else:
try:
self.exprs = list( exprs )
except TypeError:
self.exprs = [ exprs ]
self.callPreparse = False
示例6: flatten
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def flatten(x):
"""Flattens a cell state by concatenating a sequence of cell
states along the last dimension. If the cell states are
:tf_main:`LSTMStateTuple <contrib/rnn/LSTMStateTuple>`, only the
hidden `LSTMStateTuple.h` is used.
This process is used by default if :attr:`medium` is not provided
to :meth:`_build`.
"""
if isinstance(x, LSTMStateTuple):
return x.h
if isinstance(x, collections.Sequence):
return tf.concat(
[HierarchicalRNNEncoder.flatten(v) for v in x], -1)
else:
return x
示例7: collate_fn
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def collate_fn(self):
def collate(batch):
if len(self.fields) == 1:
batch = [batch, ]
else:
batch = list(zip(*batch))
tensors = []
for field, data in zip(self.fields.values(), batch):
tensor = field.process(data)
if isinstance(tensor, collections.Sequence) and any(isinstance(t, torch.Tensor) for t in tensor):
tensors.extend(tensor)
else:
tensors.append(tensor)
if len(tensors) > 1:
return tensors
else:
return tensors[0]
return collate
示例8: dict_gather
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def dict_gather(outputs, target_device, dim=0):
"""
Gathers variables from different GPUs on a specified device
(-1 means the CPU), with dictionary support.
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, Variable):
# MJY(20180330) HACK:: force nr_dims > 0
if out.dim() == 0:
outputs = [o.unsqueeze(0) for o in outputs]
return Gather.apply(target_device, dim, *outputs)
elif out is None:
return None
elif isinstance(out, collections.Mapping):
return {k: gather_map([o[k] for o in outputs]) for k in out}
elif isinstance(out, collections.Sequence):
return type(out)(map(gather_map, zip(*outputs)))
return gather_map(outputs)
示例9: build
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def build(self, input_shape):
if isinstance(input_shape, collections.Sequence):
input_shape = input_shape[0]
out_channels = input_shape[1]
if self.weights_initializer is None:
weights_initializer = tf.keras.initializers.VarianceScaling
else:
weights_initializer = self.weights_initializer
self.dense_H = tf.keras.layers.Dense(
out_channels,
activation=self.activation_fn,
bias_initializer=self.biases_initializer,
kernel_initializer=weights_initializer)
self.dense_T = tf.keras.layers.Dense(
out_channels,
activation=tf.nn.sigmoid,
bias_initializer=tf.constant_initializer(-1),
kernel_initializer=weights_initializer)
self.built = True
示例10: _serialize_internal
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def _serialize_internal(cls, msg):
# insert the name of the class
data = [msg.__class__.__name__]
# get list of fields
fields = msg.__class__.get_fields()
for field_name, field_type in fields:
attr = getattr(msg, field_name)
if field_type is not None and attr is not None:
# if attr has a field type defined deserialize that field
data.extend(cls._serialize_internal(attr))
else:
if isinstance(attr, str) or isinstance(attr, bytes):
data.append(attr)
elif isinstance(attr, collections.Sequence):
data.append([cls._serialize_internal(i) for i in attr])
elif isinstance(attr, collections.Mapping):
data.append({k: cls._serialize_internal(v) for k, v in attr.items()})
else:
data.append(attr)
return data
示例11: __init__
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def __init__(self, config, queue, events, loop=None):
"""
Initialize instance of the NodeManager class
:param config: config object
:param queue: broadcast queue
:type config: tattle.config.Configuration
:type events: tattle.event.EventManager
:type queue: tattle.queue.BroadcastQueue
"""
self.config = config
self._queue = queue
self._events = events
self._loop = loop or asyncio.get_event_loop()
self._leaving = False
self._nodes = list()
self._nodes_map = dict()
self._nodes_lock = asyncio.Lock()
self._suspect_nodes = dict()
self._local_node_name = None
self._local_node_seq = sequence.Sequence()
示例12: _clone_node_with_lineno
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def _clone_node_with_lineno(node, parent, lineno):
cls = node.__class__
other_fields = node._other_fields
_astroid_fields = node._astroid_fields
init_params = {"lineno": lineno, "col_offset": node.col_offset, "parent": parent}
postinit_params = {param: getattr(node, param) for param in _astroid_fields}
if other_fields:
init_params.update({param: getattr(node, param) for param in other_fields})
new_node = cls(**init_params)
if hasattr(node, "postinit") and _astroid_fields:
for param, child in postinit_params.items():
if child and not isinstance(child, collections.Sequence):
cloned_child = _clone_node_with_lineno(
node=child, lineno=new_node.lineno, parent=new_node
)
postinit_params[param] = cloned_child
new_node.postinit(**postinit_params)
return new_node
示例13: _sequence_like
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def _sequence_like(instance, args):
"""Converts the sequence `args` to the same type as `instance`.
Args:
instance: an instance of `tuple`, `list`, or a `namedtuple` class.
args: elements to be converted to a sequence.
Returns:
`args` with the type of `instance`.
"""
if (isinstance(instance, tuple) and
hasattr(instance, "_fields") and
isinstance(instance._fields, collections.Sequence) and
all(isinstance(f, six.string_types) for f in instance._fields)):
# This is a namedtuple
return type(instance)(*args)
else:
# Not a namedtuple
return type(instance)(args)
示例14: constrain_collection
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def constrain_collection(config: PushConfig, coll: Sequence) -> Sequence:
"""Constrains the collection to a size that is safe for Push program execution."""
if len(coll) > config.collection_size_cap:
return coll[:config.collection_size_cap]
return coll
示例15: convert
# 需要导入模块: import collections [as 别名]
# 或者: from collections import Sequence [as 别名]
def convert(self, value):
if isinstance(value, collections.Sequence):
return list(map(self._elem_converter, value))
else:
# TODO: Handle the case where the value is not an sequence.
return [self._elem_converter(value)]