本文整理汇总了Python中cntk.plus方法的典型用法代码示例。如果您正苦于以下问题:Python cntk.plus方法的具体用法?Python cntk.plus怎么用?Python cntk.plus使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cntk
的用法示例。
在下文中一共展示了cntk.plus方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: SmoothL1Loss
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import plus [as 别名]
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights):
"""
From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py
ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2
|x| - 0.5 / sigma^2, otherwise
"""
sigma2 = sigma * sigma
inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets)))
smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2)
smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2)
smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2)
smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign),
C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign)))
return C.element_times(bbox_outside_weights, smooth_l1_result)
示例2: _moments
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import plus [as 别名]
def _moments(x, axes=None, shift=None, keep_dims=False):
_axes = tuple(axes)
if shift is None:
shift = x
# Compute true mean while keeping the dims for proper broadcasting.
for axis in _axes:
shift = C.reduce_mean(shift, axis=axis)
shift = C.stop_gradient(shift)
shifted_mean = C.minus(x, shift)
for axis in _axes:
shifted_mean = C.reduce_mean(shifted_mean, axis=axis)
variance_mean = C.square(C.minus(x, shift))
for axis in _axes:
variance_mean = C.reduce_mean(variance_mean, axis=axis)
variance = C.minus(variance_mean, C.square(shifted_mean))
mean = C.plus(shifted_mean, shift)
if not keep_dims:
mean = squeeze(mean, _axes)
variance = squeeze(variance, _axes)
return mean, variance
示例3: test_plus_1
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import plus [as 别名]
def test_plus_1():
cntk_op = C.plus([1, 2, 3], [4, 5, 6])
cntk_ret = cntk_op.eval()
ng_op, _ = CNTKImporter().import_model(cntk_op)
ng_ret = ng.transformers.make_transformer().computation(ng_op)()
assert np.array_equal(cntk_ret, ng_ret)
示例4: test_plus_2
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import plus [as 别名]
def test_plus_2():
cntk_op = C.plus([[1, 2, 3], [4, 5, 6]], [7, 8, 9])
cntk_ret = cntk_op.eval()
ng_op, _ = CNTKImporter().import_model(cntk_op)
ng_ret = ng.transformers.make_transformer().computation(ng_op)()
assert np.array_equal(cntk_ret, ng_ret)
示例5: test_plus_3
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import plus [as 别名]
def test_plus_3():
cntk_op = C.plus([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
cntk_ret = cntk_op.eval()
ng_op, _ = CNTKImporter().import_model(cntk_op)
ng_ret = ng.transformers.make_transformer().computation(ng_op)()
assert np.array_equal(cntk_ret, ng_ret)