本文整理汇总了Python中cntk.input_variable方法的典型用法代码示例。如果您正苦于以下问题:Python cntk.input_variable方法的具体用法?Python cntk.input_variable怎么用?Python cntk.input_variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cntk
的用法示例。
在下文中一共展示了cntk.input_variable方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_model_and_execute_test
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import input_variable [as 别名]
def _create_model_and_execute_test(params):
# Create CNTK model
input_var = C.input_variable(params['input_dim'], np.float32)
params['input_var'] = input_var
params['act_fun'] = C.layers.blocks.identity
params['init_fun'] = C.glorot_uniform()
model = params['create_model'](params)
label_var = C.input_variable((params['label_dim']), np.float32)
loss = C.cross_entropy_with_softmax(model, label_var)
eval_error = C.classification_error(model, label_var)
lr_schedule = C.learning_rate_schedule(0.05, C.UnitType.minibatch)
learner = C.sgd(model.parameters, lr_schedule)
trainer = C.Trainer(model, (loss, eval_error), [learner])
input_value, label_value = _generate_random_sample(
params['batch_size'],
params['input_dim'],
params['label_dim']
)
# Import to ngraph
ng_loss, placeholders = CNTKImporter(batch_size=params['batch_size']).import_model(loss)
parallel_update = CommonSGDOptimizer(0.05).minimize(ng_loss, ng_loss.variables())
transformer = ng.transformers.make_transformer()
update_fun = transformer.computation([ng_loss, parallel_update], *placeholders)
# Execute on CNTK
trainer.train_minibatch({input_var: input_value, label_var: label_value})
cntk_ret = trainer.previous_minibatch_loss_average
# Execute on ngraph
input_value = np.moveaxis(input_value, 0, -1)
label_value = np.moveaxis(label_value, 0, -1)
ng_ret = update_fun(input_value, label_value)[0]
return cntk_ret, ng_ret
示例2: create_network
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import input_variable [as 别名]
def create_network(num_convolution_layers):
""" Create network
"""
# Input variables denoting the features and label data
input_var = cntk.input_variable((_NUM_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH))
label_var = cntk.input_variable((_NUM_CLASSES))
# create model, and configure learning parameters
# Instantiate the feedforward classification model
input_removemean = minus(input_var, constant(128))
scaled_input = element_times(constant(0.00390625), input_removemean)
print('Creating NN model')
with layers.default_options(activation=relu, pad=True):
model = layers.Sequential([
layers.For(range(num_convolution_layers), lambda: [
layers.Convolution2D((3, 3), 64),
layers.Convolution2D((3, 3), 64),
layers.MaxPooling((3, 3), (2, 2))
]),
layers.For(range(2), lambda i: [
layers.Dense([256, 128][i]),
layers.Dropout(0.5)
]),
layers.Dense(_NUM_CLASSES, activation=None)
])(scaled_input)
# loss and metric
ce = cross_entropy_with_softmax(model, label_var)
pe = classification_error(model, label_var)
return {
'name': 'convnet',
'feature': input_var,
'label': label_var,
'ce': ce,
'pe': pe,
'output': model
}
示例3: D
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import input_variable [as 别名]
def D(x_img, x_code):
'''
Detector network architecture
Args:
x_img: cntk.input_variable represent images to network
x_code: cntk.input_variable represent conditional code to network
'''
def bn_with_leaky_relu(x, leak=0.2):
h = C.layers.BatchNormalization(map_rank=1)(x)
r = C.param_relu(C.constant((np.ones(h.shape) * leak).astype(np.float32)), h)
return r
with C.layers.default_options(init=C.normal(scale=0.02)):
h0 = C.layers.Convolution2D(dkernel, 1, strides=dstride)(x_img)
h0 = bn_with_leaky_relu(h0, leak=0.2)
print('h0 shape :', h0.shape)
h1 = C.layers.Convolution2D(dkernel, 64, strides=dstride)(h0)
h1 = bn_with_leaky_relu(h1, leak=0.2)
print('h1 shape :', h1.shape)
h2 = C.layers.Dense(256, activation=None)(h1)
h2 = bn_with_leaky_relu(h2, leak=0.2)
print('h2 shape :', h2.shape)
h2_aug = C.splice(h2, x_code)
h3 = C.layers.Dense(256, activation=C.relu)(h2_aug)
h4 = C.layers.Dense(1, activation=C.sigmoid, name='D_out')(h3)
print('h3 shape :', h4.shape)
return h4
示例4: eval_and_plot_faster_rcnn
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import input_variable [as 别名]
def eval_and_plot_faster_rcnn(eval_model, num_images_to_plot, test_map_file, img_shape,
results_base_path, feature_node_name, classes,
drawUnregressedRois=False, drawNegativeRois=False,
nmsThreshold=0.5, nmsConfThreshold=0.0, bgrPlotThreshold = 0.8):
# get image paths
with open(test_map_file) as f:
content = f.readlines()
img_base_path = os.path.dirname(os.path.abspath(test_map_file))
img_file_names = [os.path.join(img_base_path, x.split('\t')[1]) for x in content]
# prepare model
image_input = input_variable(img_shape, dynamic_axes=[Axis.default_batch_axis()], name=feature_node_name)
dims_input = input_variable((1,6), dynamic_axes=[Axis.default_batch_axis()], name='dims_input')
frcn_eval = eval_model(image_input, dims_input)
#dims_input_const = cntk.constant([image_width, image_height, image_width, image_height, image_width, image_height], (1, 6))
print("Plotting results from Faster R-CNN model for %s images." % num_images_to_plot)
for i in range(0, num_images_to_plot):
imgPath = img_file_names[i]
# evaluate single image
_, cntk_img_input, dims = load_resize_and_pad(imgPath, img_shape[2], img_shape[1])
dims_input = np.array(dims, dtype=np.float32)
dims_input.shape = (1,) + dims_input.shape
output = frcn_eval.eval({frcn_eval.arguments[0]: [cntk_img_input], frcn_eval.arguments[1]: dims_input})
out_dict = dict([(k.name, k) for k in output])
out_cls_pred = output[out_dict['cls_pred']][0]
out_rpn_rois = output[out_dict['rpn_rois']][0]
out_bbox_regr = output[out_dict['bbox_regr']][0]
labels = out_cls_pred.argmax(axis=1)
scores = out_cls_pred.max(axis=1).tolist()
if drawUnregressedRois:
# plot results without final regression
imgDebug = visualizeResultsFaster(imgPath, labels, scores, out_rpn_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=None, boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave("{}/{}_{}".format(results_base_path, i, os.path.basename(imgPath)), imgDebug)
# apply regression and nms to bbox coordinates
regressed_rois = regress_rois(out_rpn_rois, out_bbox_regr, labels, dims)
nmsKeepIndices = apply_nms_to_single_image_results(regressed_rois, labels, scores,
nms_threshold=nmsThreshold,
conf_threshold=nmsConfThreshold)
img = visualizeResultsFaster(imgPath, labels, scores, regressed_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=nmsKeepIndices,
boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave("{}/{}_regr_{}".format(results_base_path, i, os.path.basename(imgPath)), img)
####################################
# helper library
####################################
示例5: build_graph
# 需要导入模块: import cntk [as 别名]
# 或者: from cntk import input_variable [as 别名]
def build_graph(config):
assert(config['type'] in ["cnn", "lstm", "gru", "bilstm", "bigru"])
if config["type"] == "cnn":
# static model
features = C.input_variable(input_dim_model, name="input")
labels = C.input_variable(label_dim, name="label")
else:
# recurrent model
features = C.sequence.input_variable(input_dim_model, name="input")
labels = C.sequence.input_variable(label_dim, name="label")
netoutput = create_model(features, config["type"], config["encoder"], config["pretrained_model"], config["e3_clone"])
if config["l2_loss_type"] == 1:
print("Use standard l2 loss")
ce = l2_loss(netoutput, labels)
elif config["l2_loss_type"] == 2:
print("Use variance normalized l2 loss")
ce = std_normalized_l2_loss(netoutput, labels)
else:
raise ValueError("Unsupported loss type")
# enforce sparsity output
if config["l1_reg"] > sys.float_info.epsilon:
ce = ce + config["l1_reg"] * l1_reg_loss(netoutput)
# performance metrics
pe = C.squared_error(netoutput, labels)
if config["constlr"]:
lr_schedule = config["lr"]
else:
if config["lr_list"] is not None:
print("use learning rate schedule from file")
lr_schedule = config["lr_list"]
else:
if config["type"] != "cnn": # default learning rate for recurrent model
lr_schedule = [0.005] + [0.0025]*2 + [0.001]*4 + [0.0005]*8 + [0.00025]*16 + [0.0001]*1000 + [0.00005]*1000 + [0.000025]
elif config["lr_schedule"] == 1: # learning rate for CNN
lr_schedule = [0.005] + [0.0025]*2 + [0.00125]*3 + [0.0005]*4 + [0.00025]*5 + [0.0001]
elif config["lr_schedule"] == 2:
lr_schedule = [0.005] + [0.0025]*2 + [0.00125]*3 + [0.0005]*4 + [0.00025]*5 + [0.0001]*100 + [0.00005]*50 + [0.000025]*50 + [0.00001]
else:
raise ValueError("unknown learning rate")
learning_rate = C.learning_parameter_schedule_per_sample(lr_schedule, epoch_size=config["epoch_size"])
momentum_schedule = C.momentum_schedule(0.9, minibatch_size=300)
learner = C.adam(netoutput.parameters, lr=learning_rate, momentum=momentum_schedule,
l2_regularization_weight=0.0001,
gradient_clipping_threshold_per_sample=3.0, gradient_clipping_with_truncation=True)
trainer = C.Trainer(netoutput, (ce, pe), [learner])
return features, labels, netoutput, trainer
#-----------------------------------
# training procedure
#-----------------------------------
# create reader