本文整理汇总了Python中cmath.e方法的典型用法代码示例。如果您正苦于以下问题:Python cmath.e方法的具体用法?Python cmath.e怎么用?Python cmath.e使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cmath
的用法示例。
在下文中一共展示了cmath.e方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_constants
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def test_constants(self):
e_expected = 2.71828182845904523536
pi_expected = 3.14159265358979323846
self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
self.assertAlmostEqual(cmath.e, e_expected, places=9,
msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
示例2: check_polar
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def check_polar(self, func):
def check(arg, expected):
got = func(arg)
for e, g in zip(expected, got):
self.rAssertAlmostEqual(e, g)
check(0, (0., 0.))
check(1, (1., 0.))
check(-1, (1., pi))
check(1j, (1., pi / 2))
check(-3j, (3., -pi / 2))
inf = float('inf')
check(complex(inf, 0), (inf, 0.))
check(complex(-inf, 0), (inf, pi))
check(complex(3, inf), (inf, pi / 2))
check(complex(5, -inf), (inf, -pi / 2))
check(complex(inf, inf), (inf, pi / 4))
check(complex(inf, -inf), (inf, -pi / 4))
check(complex(-inf, inf), (inf, 3 * pi / 4))
check(complex(-inf, -inf), (inf, -3 * pi / 4))
nan = float('nan')
check(complex(nan, 0), (nan, nan))
check(complex(0, nan), (nan, nan))
check(complex(nan, nan), (nan, nan))
check(complex(inf, nan), (inf, nan))
check(complex(-inf, nan), (inf, nan))
check(complex(nan, inf), (inf, nan))
check(complex(nan, -inf), (inf, nan))
示例3: computeBaseClassifierCoefficient
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def computeBaseClassifierCoefficient(self, classifierIdx):
'''
输入当前正在训练的基分类器下标(从0开始),计算当前的基分类器系数 alpha 。
:param classifierIdx: 当前分类器下标(从0开始)
:return:
'''
self.alphaList[classifierIdx] = (1.0 / 2 * \
cmath.log((1.0-self.eList[classifierIdx])/self.eList[classifierIdx], cmath.e)\
).real
示例4: setPval
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def setPval(self,p): self.p = p ### Typically re-set when a moderated statistic is calculated (e.g., emperical Bayesian - eBayes)
示例5: moderateTestStats
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def moderateTestStats(pval_db,probability_statistic):
""" Calculate a moderated variance for each biological comparison based, based on the average variance of all genes or molecules.
This calculation should be identical for moderated student t-test p-values from the R package limma. Small variances might arrise
from differences in the precision float values stored by the different languages and threshold from the Newton Iteration step. This
implementation currently relies on first, second and third derivitive calculations (e.g., polygamma aka psi functions) from mpmath."""
#tst = salstat_stats.TwoSampleTests([],[]) ### Create object with two empty lists - will analyze in object database afterwards
#d0, s0_squared = tst.getModeratedStandardDeviation(pval_db)
d0, s0_squared = getModeratedStandardDeviation(pval_db,probability_statistic)
#print 'Prior degrees of freedom:',d0, 'and Prior s0 squared:',s0_squared
#d0 = 2.054191
#s0_squared = 0.01090202
for uid in pval_db:
gs = pval_db[uid]
if 'Welch' in probability_statistic:
ModeratedWelchTest(gs,d0, s0_squared)
else:
#tst.ModeratedTTestUnpaired(gs,d0, s0_squared)
ModeratedTTestUnpaired(gs,d0,s0_squared)
"""
if uid == '10367120':
print gs.Avg1(), gs.Avg2(), gs.FeatureVariance(), math.sqrt(gs.FeatureVariance()), gs.AdjP()
#gs.setFeatureVariance(math.sqrt(gs.FeatureVariance()))
#tst.ModeratedTTestUnpaired(gs,d0, s0_squared)
#print gs.Avg1(), gs.Avg2(), gs.FeatureVariance(), math.sqrt(gs.FeatureVariance()), gs.AdjP()
"""
示例6: getModeratedStandardDeviation
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def getModeratedStandardDeviation(comparison_db,probability_statistic):
variance_ls=[]; e_sum=0; d0_2nd_moment_gene_sum = 0
for uid in comparison_db:
gs = comparison_db[uid] ### Object containing summary statistics needed for each uid (aka feature)
if 'Welch' in probability_statistic:
df = gs.DF()
else:
try: df = (gs.N1() + gs.N2()) - 2
except Exception,e: print e, gs, [gs.N1(), gs.N2()];kill
sg_squared = gs.FeatureVariance()
#print uid, df, sg_squared;kill
###calculate s0 and d0
if sg_squared > 1e-11:
zg = math.log(sg_squared)
eg = zg - psi(0,df/2.0) + math.log(df/2.0)
variance_ls.append((eg,df))
n = len(variance_ls) ### number of uids analyzed
### Get the mean eg for all IDs
for (eg,df) in variance_ls:
e_sum+=eg
e_avg = e_sum/len(variance_ls)
### Calculate the d0 2nd derivitive that will later need to be solved for d0
for (eg,df) in variance_ls:
d0_2nd_moment_gene_sum += ((math.pow(eg-e_avg,2)*n)/(n-1)) - psi(1,df/2)
d0_2nd_moment_solve = d0_2nd_moment_gene_sum/len(variance_ls)
#print [d0_2nd_moment_solve]
d0 = NewtonInteration(d0_2nd_moment_solve)*2
#print [d0]
d0 = float(d0)
e = cm.e
s0_squared = math.pow(e,e_avg+psi(0,d0/2) - math.log(d0/2))
return d0, s0_squared
示例7: chisqprob
# 需要导入模块: import cmath [as 别名]
# 或者: from cmath import e [as 别名]
def chisqprob(chisq,df):
"""
Returns the (1-tailed) probability value associated with the provided
chi-square value and df. Adapted from chisq.c in Gary Perlman's |Stat.
Usage: chisqprob(chisq,df)
"""
BIG = 20.0
def ex(x):
BIG = 20.0
if x < -BIG:
return 0.0
else:
return math.exp(x)
if chisq <=0 or df < 1:
return 1.0
a = 0.5 * chisq
if df%2 == 0:
even = 1
else:
even = 0
if df > 1:
y = ex(-a)
if even:
s = y
else:
s = 2.0 * zprob(-math.sqrt(chisq))
if (df > 2):
chisq = 0.5 * (df - 1.0)
if even:
z = 1.0
else:
z = 0.5
if a > BIG:
if even:
e = 0.0
else:
e = math.log(math.sqrt(math.pi))
c = math.log(a)
while (z <= chisq):
e = math.log(z) + e
s = s + ex(c*z-a-e)
z = z + 1.0
return s
else:
if even:
e = 1.0
else:
e = 1.0 / math.sqrt(math.pi) / math.sqrt(a)
c = 0.0
while (z <= chisq):
e = e * (a/float(z))
c = c + e
z = z + 1.0
return (c*y+s)
else:
return s