本文整理汇总了Python中cloudpickle.dumps方法的典型用法代码示例。如果您正苦于以下问题:Python cloudpickle.dumps方法的具体用法?Python cloudpickle.dumps怎么用?Python cloudpickle.dumps使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cloudpickle
的用法示例。
在下文中一共展示了cloudpickle.dumps方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dumps
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def dumps(obj, protocol=None):
"""Serialize obj as a string of bytes allocated in memory
protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
between processes running the same Python version.
Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
compatibility with older versions of Python.
"""
file = StringIO()
try:
cp = CloudPickler(file, protocol=protocol)
cp.dump(obj)
return file.getvalue()
finally:
file.close()
# including pickles unloading functions in this namespace
示例2: _run_on_cluster
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def _run_on_cluster(
experiment_fn: ExperimentFn,
skein_cluster: SkeinCluster,
eval_monitor_log_thresholds: Dict[str, Tuple[float, float]] = None,
n_try: int = 0
) -> Optional[metrics.Metrics]:
def _new_experiment_fn():
return _add_monitor_to_experiment(experiment_fn())
new_experiment_fn = _new_experiment_fn
# Attempt serialization early to avoid allocating unnecesary resources
serialized_fn = cloudpickle.dumps(new_experiment_fn)
with skein_cluster.client:
return _execute_and_await_termination(
skein_cluster,
serialized_fn,
eval_monitor_log_thresholds,
n_try=n_try
)
示例3: get_safe_experiment_fn
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def get_safe_experiment_fn(full_fn_name: str, *args):
"""
tf-yarn serializes the provided experiment function with cloudpickle.dumps.
This is good for interactive experiments but can sometimes fail
because the function is not serializable.
You can use this wrapper function
if you ship your experiment function (via conda, pex) manually to the workers.
full_fn_name
the name of the function ( with the full path to package and module)
i.e. tf_yarn.my_module.my_experiment_fn
args
arguments to be provided to this function
"""
module_name, fn_name = full_fn_name.rsplit('.', 1)
module = importlib.import_module(module_name)
experiment_fn = getattr(module, fn_name)
return partial(experiment_fn, *args)
示例4: test__prepare_container
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def test__prepare_container():
with contextlib.ExitStack() as stack:
# mock modules
mocked_client_call = stack.enter_context(
patch(f"{MODULE_TO_TEST}.skein.ApplicationClient.from_current"))
mocked_logs = stack.enter_context(patch(f'{MODULE_TO_TEST}._setup_container_logs'))
mocked_cluster_spec = stack.enter_context(patch(f'{MODULE_TO_TEST}.cluster.start_cluster'))
# fill client mock
mocked_client = mock.MagicMock(spec=skein.ApplicationClient)
host_port = ('localhost', 1234)
instances = [('worker', 10), ('chief', 1)]
mocked_client.kv.wait.return_value = json.dumps(instances).encode()
mocked_client_call.return_value = mocked_client
(client, cluster_spec, cluster_tasks) = _prepare_container(host_port)
# checks
mocked_logs.assert_called_once()
mocked_cluster_spec.assert_called_once_with(host_port, mocked_client, cluster_tasks)
assert client == mocked_client
assert cluster_tasks == list(iter_tasks(instances))
示例5: as_dict
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def as_dict(self):
"""Convert this objet in a json seriable dict (can be use in __init__)
"""
# Get the properties inherited from OptiGenAlg
OptiGenAlgNsga2Deap_dict = super(OptiGenAlgNsga2Deap, self).as_dict()
if self.toolbox is None:
OptiGenAlgNsga2Deap_dict["toolbox"] = None
else: # Store serialized data (using cloudpickle) and str to read it in json save files
OptiGenAlgNsga2Deap_dict["toolbox"] = {
"__class__": str(type(self._toolbox)),
"__repr__": str(self._toolbox.__repr__()),
"serialized": dumps(self._toolbox).decode("ISO-8859-2"),
}
# The class name is added to the dict fordeserialisation purpose
# Overwrite the mother class name
OptiGenAlgNsga2Deap_dict["__class__"] = "OptiGenAlgNsga2Deap"
return OptiGenAlgNsga2Deap_dict
示例6: test_pickle_meta_evaluator
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def test_pickle_meta_evaluator():
set_seed(100)
tasks = SetTaskSampler(lambda: GarageEnv(PointEnv()))
max_path_length = 200
env = GarageEnv(PointEnv())
n_traj = 3
with tempfile.TemporaryDirectory() as log_dir_name:
runner = LocalRunner(
SnapshotConfig(snapshot_dir=log_dir_name,
snapshot_mode='last',
snapshot_gap=1))
meta_eval = MetaEvaluator(test_task_sampler=tasks,
max_path_length=max_path_length,
n_test_tasks=10,
n_exploration_traj=n_traj)
policy = RandomPolicy(env.spec.action_space)
algo = MockAlgo(env, policy, max_path_length, n_traj, meta_eval)
runner.setup(algo, env)
log_file = tempfile.NamedTemporaryFile()
csv_output = CsvOutput(log_file.name)
logger.add_output(csv_output)
meta_eval.evaluate(algo)
meta_eval_pickle = cloudpickle.dumps(meta_eval)
meta_eval2 = cloudpickle.loads(meta_eval_pickle)
meta_eval2.evaluate(algo)
示例7: tcp_send_object
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def tcp_send_object(sock, obj, compress=False, pre_pickled=False):
"""Sends any python object over TCP using cloud-pickle with optional LZ4
compression. Returns True if sent, False if connection closed"""
data = cloudpickle.dumps(obj) if not pre_pickled else obj
if compress:
import lz4.frame
data = lz4.frame.compress(data)
# Send metadata to receiver: Size of the data buffer and whether
# compression is enabled
sock.send(struct.pack("II",len(data), 1 if compress else 0))
sent = sock.send(data)
if not sent:
return False
# Assumed either connection closed and sent=0, or the full thing was sent?
# Maybe not if XFR stopped in the middle??
assert(sent == len(data))
return True
示例8: __init__
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def __init__(self, history_cls, history_args):
super().__init__()
self._last_needed_feed_count = 0
self.results = {}
self.pending_counts = {}
# Make sure to use 'spawn' and not 'fork' to allow shared CUDA tensors
# on linux
ctx = mp.get_context('spawn')
self.close_event = ctx.Event()
self.qevent = ctx.Event()
# Queue for requests, such as getting training data
self.request_queue = ctx.Queue(10)
# Queue for updates like new acting samples and priority updates
self.update_queue = ctx.Queue(10)
# Queue for sending back request results
self.result_queue = ctx.Queue()
self._process = ctx.Process(
target=self.run,
args=(history_cls, cloudpickle.dumps(history_args)))
self._process.start()
示例9: run_with_logger
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def run_with_logger(thunk, logdir):
from epg.launching import logger
from mpi4py import MPI
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:
os.makedirs(logdir, exist_ok=True)
try:
with logger.scoped_configure(dir=logdir, format_strs=None if rank == 0 else []):
retval = thunk()
if rank == 0:
atomic_write(pickle.dumps(retval, protocol=-1), os.path.join(logdir, 'retval.pkl'))
return retval
except Exception as e:
with open(os.path.join(logdir, "exception%i.txt" % rank), 'wt') as fh:
fh.write(traceback.format_exc())
raise e
示例10: __init__
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def __init__(self, make_env, observation_space):
self.observation_space = observation_space
if isinstance(observation_space, gym.spaces.Box):
num_elems = len(np.array(observation_space.low).flatten())
zeros = [0] * num_elems
self._obs_buf = Array('b', zeros)
else:
self._obs_buf = None
self._pipe, other_end = Pipe()
self._proc = Process(target=self._worker,
args=(other_end,
self._obs_buf,
cloudpickle.dumps(make_env)),
daemon=True)
self._proc.start()
self._running_cmd = None
other_end.close()
self._pipe.send(('action_space', None))
self.action_space = self._get_response()
示例11: create_worker
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def create_worker(
worker_id: int,
step_queue: Queue,
env_factory: Callable[[int, List[SideChannel]], BaseEnv],
engine_configuration: EngineConfig,
) -> UnityEnvWorker:
parent_conn, child_conn = Pipe()
# Need to use cloudpickle for the env factory function since function objects aren't picklable
# on Windows as of Python 3.6.
pickled_env_factory = cloudpickle.dumps(env_factory)
child_process = Process(
target=worker,
args=(
child_conn,
step_queue,
pickled_env_factory,
worker_id,
engine_configuration,
logger.level,
),
)
child_process.start()
return UnityEnvWorker(child_process, worker_id, parent_conn)
示例12: store
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def store(key, value, chunksize=950000):
serialized = cloudpickle.dumps(value, 2)
values = {}
for i in xrange(0, len(serialized), chunksize):
values['%s.%s' % (key, i // chunksize)] = serialized[i:i + chunksize]
return memcache.set_multi(values)
示例13: __getstate__
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
示例14: _setup_cluster_spec
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def _setup_cluster_spec(
task_instances: List[Tuple[str, int]],
app: skein.ApplicationClient
) -> tf.train.ClusterSpec:
tasks_not_in_cluster = ['evaluator', 'tensorboard']
cluster_instances = [t for t in task_instances if t[0] not in tasks_not_in_cluster]
app.kv[constants.KV_CLUSTER_INSTANCES] = json.dumps(cluster_instances).encode()
return tf.train.ClusterSpec(
cluster.aggregate_spec(app, list(_internal.iter_tasks(cluster_instances)))
)
示例15: _send_config_proto
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dumps [as 别名]
def _send_config_proto(
skein_cluster: SkeinCluster,
tf_session_config: tf.compat.v1.ConfigProto):
serialized_fn = cloudpickle.dumps(tf_session_config)
skein_cluster.app.kv[constants.KV_TF_SESSION_CONFIG] = serialized_fn