本文整理汇总了Python中cloudpickle.dump方法的典型用法代码示例。如果您正苦于以下问题:Python cloudpickle.dump方法的具体用法?Python cloudpickle.dump怎么用?Python cloudpickle.dump使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cloudpickle
的用法示例。
在下文中一共展示了cloudpickle.dump方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)
示例2: save_act
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save_act(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)
示例3: dumps
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def dumps(obj, protocol=None):
"""Serialize obj as a string of bytes allocated in memory
protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
between processes running the same Python version.
Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
compatibility with older versions of Python.
"""
file = StringIO()
try:
cp = CloudPickler(file, protocol=protocol)
cp.dump(obj)
return file.getvalue()
finally:
file.close()
# including pickles unloading functions in this namespace
示例4: save
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save(self, directory: str):
shutil.copyfile(self.model_file, os.path.join(directory, 'rnn.pt'))
shell(f'rm -f {self.model_file}')
with open(os.path.join(directory, 'rnn.pkl'), 'wb') as f:
cloudpickle.dump({
'page_field': self.page_field,
'text_field': self.text_field,
'qanta_id_field': self.qanta_id_field,
'n_classes': self.n_classes,
'gradient_clip': self.gradient_clip,
'n_hidden_units': self.n_hidden_units,
'n_hidden_layers': self.n_hidden_layers,
'nn_dropout': self.nn_dropout,
'batch_size': self.batch_size,
'use_wiki': self.use_wiki,
'n_wiki_sentences': self.n_wiki_sentences,
'wiki_title_replace_token': self.wiki_title_replace_token,
'lowercase': self.lowercase,
'random_seed': self.random_seed,
'config_num': self.config_num
}, f)
示例5: save_policy
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save_policy(self, policy_path: str):
"""Save a policy to a pickle. Can be reloaded by `.reconstruct_policy()`.
Args:
policy_path: path to save policy to.
"""
policy_params = self.sess.run(self.policy_variables)
data = {
"class": self.policy_class,
"kwargs": self.policy_kwargs,
"params": policy_params,
}
dirname = os.path.dirname(policy_path)
if dirname:
os.makedirs(dirname, exist_ok=True)
with open(policy_path, "wb") as fp:
cloudpickle.dump(data, fp)
示例6: _save_to_file_cloudpickle
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def _save_to_file_cloudpickle(save_path, data=None, params=None):
"""Legacy code for saving models with cloudpickle
:param save_path: (str or file-like) Where to store the model
:param data: (OrderedDict) Class parameters being stored
:param params: (OrderedDict) Model parameters being stored
"""
if isinstance(save_path, str):
_, ext = os.path.splitext(save_path)
if ext == "":
save_path += ".pkl"
with open(save_path, "wb") as file_:
cloudpickle.dump((data, params), file_)
else:
# Here save_path is a file-like object, not a path
cloudpickle.dump((data, params), save_path)
示例7: save_act
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save_act(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
save_variables(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)
示例8: _save_candidate_classes
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def _save_candidate_classes(candidate_classes: List[Candidate], path: str) -> None:
pickle.dump(
[
{
"class_name": candidate_class.__name__,
"mention_class_names": [
candidate_class.__name__
for candidate_class in candidate_class.mentions
],
"table_name": candidate_class.__tablename__,
"cardinality": candidate_class.cardinality,
"values": candidate_class.values,
}
for candidate_class in candidate_classes
],
open(os.path.join(path, "candidate_classes.pkl"), "wb"),
)
示例9: dumps
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def dumps(obj, protocol=None):
"""Serialize obj as a string of bytes allocated in memory
protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
between processes running the same Python version.
Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
compatibility with older versions of Python.
"""
file = BytesIO()
try:
cp = CloudPickler(file, protocol=protocol)
cp.dump(obj)
return file.getvalue()
finally:
file.close()
# including pickles unloading functions in this namespace
示例10: save
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
U.save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data), f)
示例11: _save_custom_objects
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def _save_custom_objects(path, custom_objects):
"""
Save custom objects dictionary to a cloudpickle file so a model can be easily loaded later.
:param path: An absolute path that points to the data directory within /path/to/model.
:param custom_objects: Keras ``custom_objects`` is a dictionary mapping
names (strings) to custom classes or functions to be considered
during deserialization. MLflow saves these custom layers using
CloudPickle and restores them automatically when the model is
loaded with :py:func:`mlflow.keras.load_model` and
:py:func:`mlflow.pyfunc.load_model`.
"""
import cloudpickle
custom_objects_path = os.path.join(path, _CUSTOM_OBJECTS_SAVE_PATH)
with open(custom_objects_path, "wb") as out_f:
cloudpickle.dump(custom_objects, out_f)
示例12: _save_model
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def _save_model(sk_model, output_path, serialization_format):
"""
:param sk_model: The scikit-learn model to serialize.
:param output_path: The file path to which to write the serialized model.
:param serialization_format: The format in which to serialize the model. This should be one of
the following: ``mlflow.sklearn.SERIALIZATION_FORMAT_PICKLE`` or
``mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE``.
"""
with open(output_path, "wb") as out:
if serialization_format == SERIALIZATION_FORMAT_PICKLE:
pickle.dump(sk_model, out)
elif serialization_format == SERIALIZATION_FORMAT_CLOUDPICKLE:
import cloudpickle
cloudpickle.dump(sk_model, out)
else:
raise MlflowException(
message="Unrecognized serialization format: {serialization_format}".format(
serialization_format=serialization_format),
error_code=INTERNAL_ERROR)
示例13: save
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
U.save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)
示例14: dump
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def dump(self, obj):
self.inject_addons()
try:
return Pickler.dump(self, obj)
except RuntimeError as e:
if 'recursion' in e.args[0]:
msg = """Could not pickle object as excessively deep recursion required."""
raise pickle.PicklingError(msg)
else:
raise
示例15: save
# 需要导入模块: import cloudpickle [as 别名]
# 或者: from cloudpickle import dump [as 别名]
def save(self, directory: str) -> None:
shutil.copyfile(self.model_file, os.path.join(directory, 'elmo.pt'))
shell(f'rm -f {self.model_file}')
with open(os.path.join(directory, 'elmo.pkl'), 'wb') as f:
cloudpickle.dump({
'class_to_i': self.class_to_i,
'i_to_class': self.i_to_class,
'config_num': self.config_num,
'random_seed': self.random_seed,
'dropout': self.dropout
}, f)