本文整理汇总了Python中cifar10.inference方法的典型用法代码示例。如果您正苦于以下问题:Python cifar10.inference方法的具体用法?Python cifar10.inference怎么用?Python cifar10.inference使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cifar10
的用法示例。
在下文中一共展示了cifar10.inference方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def evaluate():
"""Eval CIFAR-10 for a number of steps."""
with tf.Graph().as_default() as g:
# Get images and labels for CIFAR-10.
eval_data = FLAGS.eval_data == 'test'
images, labels = cifar10.inputs(eval_data=eval_data)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# Calculate predictions.
top_k_op = tf.nn.in_top_k(logits, labels, 1)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)
while True:
eval_once(saver, summary_writer, top_k_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例2: tower_loss
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def tower_loss(scope, images, labels):
"""Calculate the total loss on a single tower running the CIFAR model.
Args:
scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
images: Images. 4D tensor of shape [batch_size, height, width, 3].
labels: Labels. 1D tensor of shape [batch_size].
Returns:
Tensor of shape [] containing the total loss for a batch of data
"""
# Build inference Graph.
logits = cifar10.inference(images)
# Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels)
# Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope)
# Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss')
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
tf.summary.scalar(loss_name, l)
return total_loss
示例3: evaluate
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def evaluate():
"""Eval CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
# Get images and labels for CIFAR-10.
eval_data = FLAGS.eval_data == 'test'
images, labels = cifar10.inputs(eval_data=eval_data)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# Calculate predictions.
top_k_op = tf.nn.in_top_k(logits, labels, 1)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
graph_def=graph_def)
while True:
eval_once(saver, summary_writer, top_k_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例4: tower_loss
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def tower_loss(scope):
"""Calculate the total loss on a single tower running the CIFAR model.
Args:
scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
Returns:
Tensor of shape [] containing the total loss for a batch of data
"""
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
# Build inference Graph.
logits = cifar10.inference(images)
# Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels)
# Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope)
# Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss')
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
tf.summary.scalar(loss_name, l)
return total_loss
示例5: evaluate
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def evaluate(eval_dir):
"""Eval CIFAR-10 for a number of steps."""
with tf.Graph().as_default() as g:
# Get images and labels for CIFAR-10.
eval_data = FLAGS.eval_data == 'test'
images, labels = cifar10.inputs(eval_data=eval_data)
phase = tf.Variable(False, name='is_train', dtype=bool, trainable=False)
# Build a Graph that computes the logits predictions from the
# inference model.
if not FLAGS.vanilla:
logits = cifar10.inference(images, phase, vd.conv2d)
else:
logits = cifar10.inference(images, phase, None)
# Calculate predictions.
top_k_op = tf.nn.in_top_k(logits, labels, 1)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(eval_dir, g)
while True:
eval_once(saver, summary_writer, top_k_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例6: load_model
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def load_model(self):
sess = tf.Session()
x = tf.placeholder(dtype=tf.float32, shape=[1, 24, 24, 3], name='input')
#inferece
pred = tf.argmax(cifar10.inference(x),axis=1)
#load model
saver = tf.train.Saver()
params_file = tf.train.latest_checkpoint(self.model_dir)
saver.restore(sess=sess, save_path=params_file)
self.output['sess'] = sess
self.output['x'] = x
self.output['y_'] = pred
示例7: evaluate
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def evaluate():
"""Eval CIFAR-10 for a number of steps."""
with tf.Graph().as_default() as g:
# Get images and labels for CIFAR-10.
images, labels = cifar10.inputs(eval_data=FLAGS.eval_data)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
logits = tf.cast(logits, "float32")
labels = tf.cast(labels, "int32")
# Calculate predictions.
top_k_op = tf.nn.in_top_k(logits, labels, 1)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)
while True:
eval_once(saver, summary_writer, top_k_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:34,代码来源:cifar10_eval.py
示例8: train
# 需要导入模块: import cifar10 [as 别名]
# 或者: from cifar10 import inference [as 别名]
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
global_step = tf.contrib.framework.get_or_create_global_step()
# Get images and labels for CIFAR-10.
# Force input pipeline to CPU:0 to avoid operations sometimes ending up on
# GPU and resulting in a slow down.
with tf.device('/cpu:0'):
images, labels = cifar10.distorted_inputs()
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# Calculate loss.
loss = cifar10.loss(logits, labels)
# Build a Graph that trains the model with one batch of examples and
# updates the model parameters.
train_op = cifar10.train(loss, global_step)
class _LoggerHook(tf.train.SessionRunHook):
"""Logs loss and runtime."""
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
return tf.train.SessionRunArgs(loss) # Asks for loss value.
def after_run(self, run_context, run_values):
if self._step % FLAGS.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
loss_value = run_values.results
examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
sec_per_batch = float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), self._step, loss_value,
examples_per_sec, sec_per_batch))
with tf.train.MonitoredTrainingSession(
checkpoint_dir=FLAGS.train_dir,
hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
tf.train.NanTensorHook(loss),
_LoggerHook()],
config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement)) as mon_sess:
while not mon_sess.should_stop():
mon_sess.run(train_op)