当前位置: 首页>>代码示例>>Python>>正文


Python conv.get_conv_outsize方法代码示例

本文整理汇总了Python中chainer.utils.conv.get_conv_outsize方法的典型用法代码示例。如果您正苦于以下问题:Python conv.get_conv_outsize方法的具体用法?Python conv.get_conv_outsize怎么用?Python conv.get_conv_outsize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chainer.utils.conv的用法示例。


在下文中一共展示了conv.get_conv_outsize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def setUp(self):
        in_channels = 3
        out_channels = 2
        ndim = len(self.dims)
        ksize = (3,) * ndim
        self.stride = (2,) * ndim
        self.pad = (1,) * ndim
        x_shape = (2, 3) + self.dims
        self.x = cuda.cupy.random.uniform(-1, 1, x_shape).astype(self.dtype)
        W_scale = numpy.sqrt(1. / functools.reduce(mul, ksize, in_channels))
        W_shape = (out_channels, in_channels) + ksize
        self.W = cuda.cupy.random.normal(
            0, W_scale, W_shape).astype(self.dtype)
        gy_shape = (2, 2) + tuple(
            conv.get_conv_outsize(d, k, s, p) for (d, k, s, p) in zip(
                self.dims, ksize, self.stride, self.pad))
        self.gy = cuda.cupy.random.uniform(-1, 1, gy_shape).astype(self.dtype)
        with chainer.using_config('use_cudnn', self.use_cudnn):
            self.expect = chainer.should_use_cudnn('>=auto') and ndim > 1 
开发者ID:chainer,项目名称:chainer,代码行数:21,代码来源:test_convolution_nd.py

示例2: setUp

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def setUp(self):
        self.ndim = len(self.dims)
        self.ksize = (3,) * self.ndim
        self.stride = (2,) * self.ndim
        self.pad = (1,) * self.ndim
        self.input_shape = (2, 3) + self.dims
        outs = tuple(conv.get_conv_outsize(d, k, s, p, False)
                     for (d, k, s, p) in six.moves.zip(
                         self.dims, self.ksize, self.stride, self.pad))
        self.output_shape = (2, 3) + outs

        self.check_backward_options.update({'atol': 5e-3, 'rtol': 5e-3})
        self.check_double_backward_options.update({'atol': 5e-3, 'rtol': 5e-3})
        if self.dtype == numpy.float16:
            self.check_forward_options.update({'atol': 5e-4, 'rtol': 5e-3})
            self.check_backward_options.update({
                'eps': 1e-2, 'atol': 5e-3, 'rtol': 5e-2})
            self.check_backward_options.update({
                'eps': 1e-2, 'atol': 5e-3, 'rtol': 5e-2}) 
开发者ID:chainer,项目名称:chainer,代码行数:21,代码来源:test_average_pooling_nd.py

示例3: test_valid_insize

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def test_valid_insize(self):
        N = self.N
        c = self.c
        ksize = self.ksize
        stride = self.stride
        pad = self.pad
        outs = self.outsize
        cover_all = self.cover_all

        # Make input.
        dims = tuple(conv.get_conv_outsize(out, k, s, p, cover_all=cover_all)
                     for (out, k, s, p) in zip(outs, ksize, stride, pad))
        x_shape = (N, c) + dims
        x_data = numpy.random.uniform(-1, 1, x_shape).astype(numpy.float32)
        x = chainer.Variable(x_data)

        # Compute unpooling.
        y = functions.unpooling_nd(
            x, ksize, stride, pad, outsize=outs, cover_all=cover_all)

        # Test output's value.
        y_expected = expected_unpooling_nd(x_data, outs, ksize, stride, pad)
        testing.assert_allclose(y_expected, y.data) 
开发者ID:chainer,项目名称:chainer,代码行数:25,代码来源:test_unpooling_nd.py

示例4: test_invalid_insize

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def test_invalid_insize(self):
        ksize = self.ksize
        stride = self.stride
        pad = self.pad
        outs = self.outsize
        cover_all = self.cover_all

        # Make input with invalid shape.
        dims = tuple(conv.get_conv_outsize(out, k, s, p, cover_all=cover_all)
                     for (out, k, s, p) in zip(outs, ksize, stride, pad))
        dims = tuple(d + 1 for d in dims)  # Make invalid input shape.
        x_shape = (self.N, self.c) + dims
        x_data = numpy.random.uniform(-1, 1, x_shape).astype(numpy.float32)
        x = chainer.Variable(x_data)

        # Computing unpooling raises exception.
        with self.assertRaises(type_check.InvalidType):
            functions.unpooling_nd(
                x, ksize, stride, pad, outsize=outs, cover_all=cover_all) 
开发者ID:chainer,项目名称:chainer,代码行数:21,代码来源:test_unpooling_nd.py

示例5: im2col_nd_gpu

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def im2col_nd_gpu(img, ksize, stride, pad, cover_all=False, dilate=1):
    n, c = img.shape[0:2]       # (n, c, d_1, d_2, ..., d_N)
    dims = img.shape[2:]
    ndim = len(dims)
    dilate = as_tuple(dilate, ndim)
    assert ndim == len(ksize) == len(stride) == len(pad)
    outs = tuple(get_conv_outsize(d, k, s, p, cover_all, di)
                 for (d, k, s, p, di)
                 in zip(dims, ksize, stride, pad, dilate))
    assert all(out > 0 for out in outs), 'Output sizes should be positive.'

    # col_shape: (n, c, k_1, k_2, ..., k_N, out_1, out_2, ..., out_N)
    shape = (n, c) + ksize + outs
    col = cuda.cupy.empty(shape, dtype=img.dtype)

    in_params, out_params, operation, name = \
        conv_nd_kernel.Im2colNDKernel.generate(ndim)

    cuda.elementwise(in_params, out_params, operation, name)(
        img.reduced_view(),
        *(dims + outs + ksize + stride + pad + dilate + (col,)))

    return col 
开发者ID:chainer,项目名称:chainer,代码行数:25,代码来源:conv_nd.py

示例6: _forward_cudnn

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def _forward_cudnn(self, x, W, b):
        out_c = W.shape[0]      # (c_O, _, k_1, k_2, ..., k_N)
        ksize = W.shape[2:]
        n, c = x.shape[:2]      # (n, c_I, d_1, d_2, ..., d_N)
        dims = x.shape[2:]
        stride = self.stride
        pad = self.pad
        dilate = self.dilate
        groups = self.groups

        # Make empty array for result.
        outs = tuple(
            conv.get_conv_outsize(d, k, s, p, cover_all=self.cover_all, d=di)
            for (d, k, s, p, di) in zip(dims, ksize, stride, pad, dilate))
        assert all(out > 0 for out in outs), 'Output sizes should be positive.'
        y_shape = (n, out_c) + outs  # (n, c_O, out_1, out_2, ..., out_N)
        y = cuda.cupy.empty(y_shape, dtype=x.dtype)
        auto_tune = configuration.config.autotune
        tensor_core = configuration.config.use_cudnn_tensor_core
        cuda.cudnn.convolution_forward(
            x, W, b, y, pad, stride, dilate, groups,
            auto_tune=auto_tune, tensor_core=tensor_core)
        return y, 
开发者ID:chainer,项目名称:chainer,代码行数:25,代码来源:convolution_nd.py

示例7: _forward_ideep

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def _forward_ideep(self, x):
        self._in_shape = x[0].shape
        self._in_dtype = x[0].dtype
        self.retain_inputs((0,))

        n, c, h, w = x[0].shape
        y_h = conv.get_conv_outsize(
            h, self.kh, self.sy, self.ph, self.cover_all)
        assert y_h > 0, 'Height in the output should be positive.'
        y_w = conv.get_conv_outsize(
            w, self.kw, self.sx, self.pw, self.cover_all)
        assert y_w > 0, 'Width in the output should be positive.'
        pd = self.sy * (y_h - 1) + self.kh - h - self.ph
        pr = self.sx * (y_w - 1) + self.kw - w - self.pw

        pp = intel64.ideep.pooling2DParam(
            (n, c, y_h, y_w),
            self.kh, self.kw,
            self.sy, self.sx,
            self.ph, self.pw,
            pd, pr,
            intel64.ideep.pooling2DParam.pooling_avg_include_padding)
        y, = intel64.ideep.pooling2D.Forward(intel64.ideep.array(x[0]), pp)
        return y, 
开发者ID:chainer,项目名称:chainer,代码行数:26,代码来源:average_pooling_2d.py

示例8: forward

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def forward(self, x):
        func = self.func
        ksize = func.ksize
        stride = func.stride
        pad = func.pad
        cover_all = func.cover_all
        pool_mode = func.get_cudnn_pool_mode()

        x = x[0]
        n, c = x.shape[:2]
        dims = x.shape[2:]
        ys = tuple(conv.get_conv_outsize(d, k, s, p, cover_all)
                   for d, k, s, p in six.moves.zip(dims, ksize, stride, pad))
        y_shape = (n, c) + ys
        y = cuda.cupy.empty(y_shape, dtype=x.dtype)

        cudnn.pooling_forward(x, y, ksize, stride, pad, pool_mode)
        func.retain_inputs((0,))
        func.retain_outputs((0,))
        return y, 
开发者ID:chainer,项目名称:chainer,代码行数:22,代码来源:pooling_nd.py

示例9: check_type_forward

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def check_type_forward(self, in_types):
        n_in = in_types.size()
        type_check.expect(n_in == 1)
        x_type = in_types[0]

        type_check.expect(
            x_type.dtype.kind == 'f',
            x_type.ndim == 4,
        )

        if self.outh is not None:
            expected_h = conv.get_conv_outsize(
                self.outh, self.kh, self.sy, self.ph, cover_all=self.cover_all)
            type_check.expect(x_type.shape[2] == expected_h)
        if self.outw is not None:
            expected_w = conv.get_conv_outsize(
                self.outw, self.kw, self.sx, self.pw, cover_all=self.cover_all)
            type_check.expect(x_type.shape[3] == expected_w) 
开发者ID:chainer,项目名称:chainer,代码行数:20,代码来源:unpooling_2d.py

示例10: forward_gpu

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def forward_gpu(self, x):
        self.retain_inputs((0,))
        self._used_cudnn = True

        # Implementation using cudnn
        x = x[0]
        n, c, h, w = x.shape
        y_h = conv.get_conv_outsize(
            h, self.kh, self.sy, self.ph, self.cover_all)
        assert y_h > 0, 'Height in the output should be positive.'
        y_w = conv.get_conv_outsize(
            w, self.kw, self.sx, self.pw, self.cover_all)
        assert y_w > 0, 'Width in the output should be positive.'
        y = cuda.cupy.empty((n, c, y_h, y_w), dtype=x.dtype)

        cudnn.pooling_forward(
            x, y,
            (self.kh, self.kw), (self.sy, self.sx), (self.ph, self.pw),
            self._get_pool_mode())
        self.retain_outputs((0,))
        return y, 
开发者ID:chainer,项目名称:chainer,代码行数:23,代码来源:pooling_2d.py

示例11: check_type_forward

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def check_type_forward(self, in_types):
        n_in = in_types.size()
        type_check.expect(n_in == 1)
        x_type = in_types[0]

        type_check.expect(
            x_type.dtype.kind == 'f',
            x_type.ndim == 4,
            x_type.shape == self.indexes.shape,
        )

        if self.outh is not None:
            expected_h = conv.get_conv_outsize(
                self.outh, self.kh, self.sy, self.ph, cover_all=self.cover_all)
            type_check.expect(x_type.shape[2] == expected_h)
        if self.outw is not None:
            expected_w = conv.get_conv_outsize(
                self.outw, self.kw, self.sx, self.pw, cover_all=self.cover_all)
            type_check.expect(x_type.shape[3] == expected_w) 
开发者ID:chainer,项目名称:chainer,代码行数:21,代码来源:upsampling_2d.py

示例12: infer_return

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def infer_return(self, conv, x_type):
        ksize = make_pair(conv.ksize)
        stride = make_pair(conv.stride)
        pad = make_pair(conv.pad)
        dilate = make_pair(conv.dilate)

        shape_2 = get_conv_outsize(
                x_type.shape[2], ksize[0], stride[0], pad[0], d=dilate[0])
        shape_3 = get_conv_outsize(
                x_type.shape[3], ksize[1], stride[1], pad[1], d=dilate[1])
        ret_shape = (x_type.shape[0], conv.out_channels, shape_2, shape_3)
        return TyChainerVariable(x_type.dtype, shape=ret_shape) 
开发者ID:pfnet-research,项目名称:chainer-compiler,代码行数:14,代码来源:chainer_functions.py

示例13: check_forward

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def check_forward(self, x, kh, kw, sy, sx, ph, pw, dy, dx, gpu):
        x = x.copy()
        n, c, h, w = x.shape
        col = functions.im2col(
            x, (kh, kw), (sy, sx), (ph, pw), dilate=(dy, dx)).data
        col_h = get_conv_outsize(h, kh, sy, ph, d=dy)
        col_w = get_conv_outsize(w, kw, sx, pw, d=dx)

        self.assertEqual(col.shape, (n, c * kh * kw, col_h, col_w))
        col = col.reshape(n, c, kh, kw, col_h, col_w)
        col = cuda.to_cpu(col)

        for y in moves.range(col_h):
            for x in moves.range(col_w):
                for ky in moves.range(kh):
                    for kx in moves.range(kw):
                        oy = y * sy - ph + ky * dy
                        ox = x * sx - pw + kx * dx
                        if 0 <= oy < h and 0 <= ox < w:
                            testing.assert_allclose(
                                col[:, :, ky, kx, y, x],
                                self.x[:, :, oy, ox])
                        else:
                            testing.assert_allclose(
                                col[:, :, ky, kx, y, x],
                                numpy.zeros((2, 3), self.dtype)) 
开发者ID:chainer,项目名称:chainer,代码行数:28,代码来源:test_im2col.py

示例14: setUp

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def setUp(self):
        self.x = numpy.random.uniform(
            size=self.in_shape).astype(self.dtype)

        kh, kw = _pair(self.ksize)
        sy, sx = _pair(self.stride)
        ph, pw = _pair(self.pad)
        dy, dx = _pair(self.dilate)

        N, C, H, W = self.in_shape

        o_H = get_conv_outsize(H, kh, sy, ph, cover_all=self.cover_all, d=dy)
        o_W = get_conv_outsize(W, kw, sx, pw, cover_all=self.cover_all, d=dx)

        self.gy = numpy.random.uniform(
            size=(N, C * kh * kw, o_H, o_W)).astype(self.dtype)
        self.ggx = numpy.random.uniform(
            size=self.in_shape).astype(self.dtype)

        self.check_backward_options = {'atol': 5e-4, 'rtol': 5e-3}
        if self.dtype is numpy.float16:
            self.check_backward_options.update({'atol': 2e-3, 'rtol': 1e-2})

        self.check_double_backward_options = {'atol': 5e-4, 'rtol': 5e-3}
        if self.dtype is numpy.float16:
            self.check_double_backward_options.update(
                {'atol': 1e-3, 'rtol': 1e-2}) 
开发者ID:chainer,项目名称:chainer,代码行数:29,代码来源:test_im2col.py

示例15: _get_out_dims

# 需要导入模块: from chainer.utils import conv [as 别名]
# 或者: from chainer.utils.conv import get_conv_outsize [as 别名]
def _get_out_dims(self, in_dims):
        out_dims = tuple(
            conv.get_conv_outsize(d, k, s, p, self.cover_all)
            for d, k, s, p
            in six.moves.zip(in_dims, self.ksize, self.stride, self.pad))
        return out_dims 
开发者ID:chainer,项目名称:chainer,代码行数:8,代码来源:test_max_pooling_nd.py


注:本文中的chainer.utils.conv.get_conv_outsize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。