本文整理汇总了Python中chainer.training.extensions.ProgressBar方法的典型用法代码示例。如果您正苦于以下问题:Python extensions.ProgressBar方法的具体用法?Python extensions.ProgressBar怎么用?Python extensions.ProgressBar使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.training.extensions
的用法示例。
在下文中一共展示了extensions.ProgressBar方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def main(model):
train = read_data(fold=BUZZER_TRAIN_FOLD)
valid = read_data(fold=BUZZER_DEV_FOLD)
print('# train data: {}'.format(len(train)))
print('# valid data: {}'.format(len(valid)))
train_iter = chainer.iterators.SerialIterator(train, 64)
valid_iter = chainer.iterators.SerialIterator(valid, 64, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
updater = training.updaters.StandardUpdater(train_iter, optimizer, converter=convert_seq, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out=model.model_dir)
trainer.extend(extensions.Evaluator(valid_iter, model, converter=convert_seq, device=0))
record_trigger = training.triggers.MaxValueTrigger('validation/main/accuracy', (1, 'epoch'))
trainer.extend(extensions.snapshot_object(model, 'buzzer.npz'), trigger=record_trigger)
trainer.extend(extensions.LogReport())
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
]))
if not os.path.isdir(model.model_dir):
os.mkdir(model.model_dir)
trainer.run()
示例2: evaluate
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def evaluate(examples, iterator, model, converter, device,
predict_func):
all_results = []
all_features = []
total_iter = len(iterator.dataset) // iterator.batch_size + 1
for prebatch in progressbar.ProgressBar(max_value=total_iter)(iterator):
batch = converter(prebatch, device)
features_list = prebatch
# In `batch`, features is concatenated and to_gpu.
with chainer.no_backprop_mode(), chainer.using_config('train', False):
result = predict_func(*batch)
for i in range(len(prebatch)):
unique_id = int(result["unique_ids"][i])
start_logits = [float(x) for x in result["start_logits"][i]]
end_logits = [float(x) for x in result["end_logits"][i]]
all_results.append(
RawResult(
unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
all_features.append(features_list[i])
output_prediction_file = os.path.join(
FLAGS.output_dir, "predictions.json")
output_nbest_file = os.path.join(
FLAGS.output_dir, "nbest_predictions.json")
write_predictions(examples, all_features, all_results,
FLAGS.n_best_size, FLAGS.max_answer_length,
FLAGS.do_lower_case, output_prediction_file,
output_nbest_file)
示例3: train
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def train(args):
nz = args.nz
batch_size = args.batch_size
epochs = args.epochs
gpu = args.gpu
# CIFAR-10 images in range [-1, 1] (tanh generator outputs)
train, _ = datasets.get_cifar10(withlabel=False, ndim=3, scale=2)
train -= 1.0
train_iter = iterators.SerialIterator(train, batch_size)
z_iter = RandomNoiseIterator(GaussianNoiseGenerator(0, 1, args.nz),
batch_size)
optimizer_generator = optimizers.RMSprop(lr=0.00005)
optimizer_critic = optimizers.RMSprop(lr=0.00005)
optimizer_generator.setup(Generator())
optimizer_critic.setup(Critic())
updater = WassersteinGANUpdater(
iterator=train_iter,
noise_iterator=z_iter,
optimizer_generator=optimizer_generator,
optimizer_critic=optimizer_critic,
device=gpu)
trainer = training.Trainer(updater, stop_trigger=(epochs, 'epoch'))
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.LogReport(trigger=(1, 'iteration')))
trainer.extend(GeneratorSample(), trigger=(1, 'epoch'))
trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'critic/loss',
'critic/loss/real', 'critic/loss/fake', 'generator/loss']))
trainer.run()
示例4: check_train
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def check_train(self, gpu):
outdir = tempfile.mkdtemp()
print("outdir: {}".format(outdir))
n_classes = 2
batch_size = 32
devices = {'main': gpu}
A = np.array([
[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
]).astype(np.float32)
model = graph_cnn.GraphCNN(A, n_out=n_classes)
optimizer = optimizers.Adam(alpha=1e-4)
optimizer.setup(model)
train_dataset = EasyDataset(train=True, n_classes=n_classes)
train_iter = chainer.iterators.MultiprocessIterator(
train_dataset, batch_size)
updater = ParallelUpdater(train_iter, optimizer, devices=devices)
trainer = chainer.training.Trainer(updater, (10, 'epoch'), out=outdir)
trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'main/loss', 'main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
示例5: _train_trainer
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def _train_trainer(self, examples):
"""Training with chainer trainer module"""
train_iter = SerialIterator(examples, args.batch_size)
optimizer = optimizers.Adam(alpha=args.lr)
optimizer.setup(self.nnet)
def loss_func(boards, target_pis, target_vs):
out_pi, out_v = self.nnet(boards)
l_pi = self.loss_pi(target_pis, out_pi)
l_v = self.loss_v(target_vs, out_v)
total_loss = l_pi + l_v
chainer.reporter.report({
'loss': total_loss,
'loss_pi': l_pi,
'loss_v': l_v,
}, observer=self.nnet)
return total_loss
updater = training.StandardUpdater(
train_iter, optimizer, device=args.device, loss_func=loss_func, converter=converter)
# Set up the trainer.
trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.out)
# trainer.extend(extensions.snapshot(), trigger=(args.epochs, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'main/loss_pi', 'main/loss_v', 'elapsed_time']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
示例6: run_training
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def run_training(args, model):
trainer = create_trainer(args, model)
# Dump a computational graph from 'loss' variable at the first iteration
# The "main" refers to the target link of the "main" optimizer.
trainer.extend(extensions.dump_graph('main/loss'))
# Take a snapshot for each specified epoch
frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport())
# Save two plot images to the result dir
if args.plot and extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'))
trainer.extend(
extensions.PlotReport(
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'))
# Print selected entries of the log to stdout
# Here "main" refers to the target link of the "main" optimizer again, and
# "validation" refers to the default name of the Evaluator extension.
# Entries other than 'epoch' are reported by the Classifier link, called by
# either the updater or the evaluator.
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
# Print a progress bar to stdout
trainer.extend(extensions.ProgressBar())
if args.resume:
# Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)
# Run the training
trainer.run()
示例7: prepare_trainer
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def prepare_trainer(net,
optimizer_name,
lr,
momentum,
num_epochs,
train_data,
val_data,
logging_dir_path,
use_gpus):
if optimizer_name == "sgd":
optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
elif optimizer_name == "nag":
optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
else:
raise Exception("Unsupported optimizer: {}".format(optimizer_name))
optimizer.setup(net)
# devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
devices = (0,) if use_gpus else (-1,)
updater = training.updaters.StandardUpdater(
iterator=train_data["iterator"],
optimizer=optimizer,
device=devices[0])
trainer = training.Trainer(
updater=updater,
stop_trigger=(num_epochs, "epoch"),
out=logging_dir_path)
val_interval = 100000, "iteration"
log_interval = 1000, "iteration"
trainer.extend(
extension=extensions.Evaluator(
iterator=val_data["iterator"],
target=net,
device=devices[0]),
trigger=val_interval)
trainer.extend(extensions.dump_graph("main/loss"))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(
extensions.snapshot_object(
net,
"model_iter_{.updater.iteration}"),
trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(
extensions.PrintReport([
"epoch", "iteration", "main/loss", "validation/main/loss", "main/accuracy", "validation/main/accuracy",
"lr"]),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
return trainer
示例8: prepare_trainer
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def prepare_trainer(net,
optimizer_name,
lr,
momentum,
num_epochs,
train_iter,
val_iter,
logging_dir_path,
num_gpus=0):
if optimizer_name == "sgd":
optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
elif optimizer_name == "nag":
optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
else:
raise Exception('Unsupported optimizer: {}'.format(optimizer_name))
optimizer.setup(net)
# devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
devices = (0,) if num_gpus > 0 else (-1,)
updater = training.updaters.StandardUpdater(
iterator=train_iter,
optimizer=optimizer,
device=devices[0])
trainer = training.Trainer(
updater=updater,
stop_trigger=(num_epochs, 'epoch'),
out=logging_dir_path)
val_interval = 100000, 'iteration'
log_interval = 1000, 'iteration'
trainer.extend(
extension=extensions.Evaluator(
val_iter,
net,
device=devices[0]),
trigger=val_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(
extensions.snapshot_object(
net,
'model_iter_{.updater.iteration}'),
trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(
extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy',
'lr']),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
return trainer
示例9: train_main
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def train_main(args):
"""
trains model specfied in args.
main method for train subcommand.
"""
# load text
with open(args.text_path) as f:
text = f.read()
logger.info("corpus length: %s.", len(text))
# data iterator
data_iter = DataIterator(text, args.batch_size, args.seq_len)
# load or build model
if args.restore:
logger.info("restoring model.")
load_path = args.checkpoint_path if args.restore is True else args.restore
model = load_model(load_path)
else:
net = Network(vocab_size=VOCAB_SIZE,
embedding_size=args.embedding_size,
rnn_size=args.rnn_size,
num_layers=args.num_layers,
drop_rate=args.drop_rate)
model = L.Classifier(net)
# make checkpoint directory
log_dir = make_dirs(args.checkpoint_path)
with open("{}.json".format(args.checkpoint_path), "w") as f:
json.dump(model.predictor.args, f, indent=2)
chainer.serializers.save_npz(args.checkpoint_path, model)
logger.info("model saved: %s.", args.checkpoint_path)
# optimizer
optimizer = chainer.optimizers.Adam(alpha=args.learning_rate)
optimizer.setup(model)
# clip gradient norm
optimizer.add_hook(chainer.optimizer.GradientClipping(args.clip_norm))
# trainer
updater = BpttUpdater(data_iter, optimizer)
trainer = chainer.training.Trainer(updater, (args.num_epochs, 'epoch'), out=log_dir)
trainer.extend(extensions.snapshot_object(model, filename=os.path.basename(args.checkpoint_path)))
trainer.extend(extensions.ProgressBar(update_interval=1))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PlotReport(y_keys=["main/loss"]))
trainer.extend(LoggerExtension(text))
# training start
model.predictor.reset_state()
logger.info("start of training.")
time_train = time.time()
trainer.run()
# training end
duration_train = time.time() - time_train
logger.info("end of training, duration: %ds.", duration_train)
# generate text
seed = generate_seed(text)
generate_text(model, seed, 1024, 3)
return model
示例10: train
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def train(train_data_path, test_data_path, args):
device = chainer.get_device(args.device)
device.use()
vocab = collections.defaultdict(lambda: len(vocab))
vocab['<unk>'] = 0
train_data = babi.read_data(vocab, train_data_path)
test_data = babi.read_data(vocab, test_data_path)
print('Training data: %s: %d' % (train_data_path, len(train_data)))
print('Test data: %s: %d' % (test_data_path, len(test_data)))
train_data = memnn.convert_data(train_data, args.max_memory)
test_data = memnn.convert_data(test_data, args.max_memory)
encoder = memnn.make_encoder(args.sentence_repr)
network = memnn.MemNN(
args.unit, len(vocab), encoder, args.max_memory, args.hop)
model = chainer.links.Classifier(network, label_key='answer')
opt = chainer.optimizers.Adam()
model.to_device(device)
opt.setup(model)
train_iter = chainer.iterators.SerialIterator(
train_data, args.batchsize)
test_iter = chainer.iterators.SerialIterator(
test_data, args.batchsize, repeat=False, shuffle=False)
updater = chainer.training.StandardUpdater(train_iter, opt, device=device)
trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))
@chainer.training.make_extension()
def fix_ignore_label(trainer):
network.fix_ignore_label()
trainer.extend(fix_ignore_label)
trainer.extend(extensions.Evaluator(test_iter, model, device=device))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
if args.model:
memnn.save_model(args.model, model, vocab)
示例11: get_trainer
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def get_trainer(optimizer, iter_train, iter_valid, iter_valid_raw,
class_names, args):
model = optimizer.target
updater = chainer.training.StandardUpdater(
iter_train, optimizer, device=args.gpu)
trainer = chainer.training.Trainer(
updater, (args.max_iteration, 'iteration'), out=args.out)
trainer.extend(fcn.extensions.ParamsReport(args.__dict__))
trainer.extend(extensions.ProgressBar(update_interval=5))
trainer.extend(extensions.LogReport(
trigger=(args.interval_print, 'iteration')))
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'elapsed_time',
'main/loss', 'validation/main/miou']))
def pred_func(x):
model(x)
return model.score
trainer.extend(
fcn.extensions.SemanticSegmentationVisReport(
pred_func, iter_valid_raw,
transform=fcn.datasets.transform_lsvrc2012_vgg16,
class_names=class_names, device=args.gpu, shape=(4, 2)),
trigger=(args.interval_eval, 'iteration'))
trainer.extend(
chainercv.extensions.SemanticSegmentationEvaluator(
iter_valid, model, label_names=class_names),
trigger=(args.interval_eval, 'iteration'))
trainer.extend(extensions.snapshot_object(
target=model, filename='model_best.npz'),
trigger=chainer.training.triggers.MaxValueTrigger(
key='validation/main/miou',
trigger=(args.interval_eval, 'iteration')))
assert extensions.PlotReport.available()
trainer.extend(extensions.PlotReport(
y_keys=['main/loss'], x_key='iteration',
file_name='loss.png', trigger=(args.interval_print, 'iteration')))
trainer.extend(extensions.PlotReport(
y_keys=['validation/main/miou'], x_key='iteration',
file_name='miou.png', trigger=(args.interval_print, 'iteration')))
return trainer
示例12: train
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def train(train_data_path, test_data_path, args):
vocab = collections.defaultdict(lambda: len(vocab))
vocab['<unk>'] = 0
train_data = babi.read_data(vocab, train_data_path)
test_data = babi.read_data(vocab, test_data_path)
print('Training data: %s: %d' % (train_data_path, len(train_data)))
print('Test data: %s: %d' % (test_data_path, len(test_data)))
train_data = memnn.convert_data(train_data, args.max_memory)
test_data = memnn.convert_data(test_data, args.max_memory)
encoder = memnn.make_encoder(args.sentence_repr)
network = memnn.MemNN(
args.unit, len(vocab), encoder, args.max_memory, args.hop)
model = chainer.links.Classifier(network, label_key='answer')
opt = chainer.optimizers.Adam()
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
opt.setup(model)
train_iter = chainer.iterators.SerialIterator(
train_data, args.batchsize)
test_iter = chainer.iterators.SerialIterator(
test_data, args.batchsize, repeat=False, shuffle=False)
updater = chainer.training.StandardUpdater(
train_iter, opt, device=args.gpu)
trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))
@chainer.training.make_extension()
def fix_ignore_label(trainer):
network.fix_ignore_label()
trainer.extend(fix_ignore_label)
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
if args.model:
memnn.save_model(args.model, model, vocab)
示例13: get_trainer
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def get_trainer(net, updater, log_dir, print_fields, curriculum=None, extra_extensions=(), epochs=10, snapshot_interval=20000, print_interval=100, postprocess=None, do_logging=True, model_files=()):
if curriculum is None:
trainer = chainer.training.Trainer(
updater,
(epochs, 'epoch'),
out=log_dir,
)
else:
trainer = chainer.training.Trainer(
updater,
EarlyStopIntervalTrigger(epochs, 'epoch', curriculum),
out=log_dir,
)
# dump computational graph
trainer.extend(extensions.dump_graph('main/loss'))
# also observe learning rate
observe_lr_extension = chainer.training.extensions.observe_lr()
observe_lr_extension.trigger = (print_interval, 'iteration')
trainer.extend(observe_lr_extension)
# Take snapshots
trainer.extend(
extensions.snapshot(filename="trainer_snapshot"),
trigger=lambda trainer:
trainer.updater.is_new_epoch or
(trainer.updater.iteration > 0 and trainer.updater.iteration % snapshot_interval == 0)
)
if do_logging:
# write all statistics to a file
trainer.extend(Logger(model_files, log_dir, keys=print_fields, trigger=(print_interval, 'iteration'), postprocess=postprocess))
# print some interesting statistics
trainer.extend(extensions.PrintReport(
print_fields,
log_report='Logger',
))
# Progressbar!!
trainer.extend(extensions.ProgressBar(update_interval=1))
for extra_extension, trigger in extra_extensions:
trainer.extend(extra_extension, trigger=trigger)
return trainer
示例14: train_one_epoch
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def train_one_epoch(model, train_data, lr, gpu, batchsize, out):
train_model = PixelwiseSoftmaxClassifier(model)
if gpu >= 0:
# Make a specified GPU current
chainer.cuda.get_device_from_id(gpu).use()
train_model.to_gpu() # Copy the model to the GPU
log_trigger = (0.1, 'epoch')
validation_trigger = (1, 'epoch')
end_trigger = (1, 'epoch')
train_data = TransformDataset(
train_data, ('img', 'label_map'), SimpleDoesItTransform(model.mean))
val = VOCSemanticSegmentationWithBboxDataset(
split='val').slice[:, ['img', 'label_map']]
# Iterator
train_iter = iterators.MultiprocessIterator(train_data, batchsize)
val_iter = iterators.MultiprocessIterator(
val, 1, shuffle=False, repeat=False, shared_mem=100000000)
# Optimizer
optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9)
optimizer.setup(train_model)
optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0001))
# Updater
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=gpu)
# Trainer
trainer = training.Trainer(updater, end_trigger, out=out)
trainer.extend(extensions.LogReport(trigger=log_trigger))
trainer.extend(extensions.observe_lr(), trigger=log_trigger)
trainer.extend(extensions.dump_graph('main/loss'))
if extensions.PlotReport.available():
trainer.extend(extensions.PlotReport(
['main/loss'], x_key='iteration',
file_name='loss.png'))
trainer.extend(extensions.PlotReport(
['validation/main/miou'], x_key='iteration',
file_name='miou.png'))
trainer.extend(extensions.snapshot_object(
model, filename='snapshot.npy'),
trigger=end_trigger)
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'elapsed_time', 'lr',
'main/loss', 'validation/main/miou',
'validation/main/mean_class_accuracy',
'validation/main/pixel_accuracy']),
trigger=log_trigger)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(
SemanticSegmentationEvaluator(
val_iter, model,
voc_semantic_segmentation_label_names),
trigger=validation_trigger)
trainer.run()
示例15: main
# 需要导入模块: from chainer.training import extensions [as 别名]
# 或者: from chainer.training.extensions import ProgressBar [as 别名]
def main():
gpu, out = -1, "result"
stepsize = 0.001
batchsize, epoch = 10000, 10
beta, gamma = 0., 1.
data_id, prior = 0, .5
n_p, n_n, n_u, n_t, n_vp, n_vn, n_vu = 100, 0, 10000, 100, 20, 20, 100
data_name, x_p, x_n, x_u, y_u, x_t, y_t, x_vp, x_vn, x_vu, y_vu \
= load_dataset(data_id, n_p, n_n, n_u, prior, n_t, n_vp=n_vp, n_vn=n_vn, n_vu=n_vu)
x_p, x_n, x_u, x_t, x_vp, x_vn, x_vu = x_p.astype(np.float32), x_n.astype(np.float32), \
x_u.astype(np.float32), x_t.astype(np.float32), x_vp.astype(np.float32), \
x_vn.astype(np.float32), x_vu.astype(np.float32),
XYtrain = TupleDataset(np.r_[x_p, x_u], np.r_[np.ones(100), np.zeros(10000)].astype(np.int32))
XYtest = TupleDataset(np.r_[x_vp, x_vu], np.r_[np.ones(20), np.zeros(100)].astype(np.int32))
train_iter = chainer.iterators.SerialIterator(XYtrain, batchsize)
test_iter = chainer.iterators.SerialIterator(XYtest, batchsize, repeat=False, shuffle=False)
loss_type = lambda x: F.sigmoid(-x)
nnpu_risk = PU_Risk(prior, loss=loss_type, nnPU=True, gamma=gamma, beta=beta)
pu_acc = PU_Accuracy(prior)
model = L.Classifier(MLP(), lossfun=nnpu_risk, accfun=pu_acc)
if gpu >= 0:
chainer.backends.cuda.get_device_from_id(gpu).use()
model.to_gpu(gpu)
optimizer = chainer.optimizers.Adam(alpha=stepsize)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(0.005))
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=gpu)
trainer = chainer.training.Trainer(updater, (epoch, 'epoch'), out=out)
trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu))
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
'elapsed_time']))
key = 'validation/main/accuracy'
model_name = 'model'
trainer.extend(extensions.snapshot_object(model, model_name),
trigger=chainer.training.triggers.MaxValueTrigger(key))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name=f'loss_curve.png'))
trainer.extend(
extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name=f'accuracy_curve.png'))
trainer.run()
yh = pred(model, x_t, batchsize, gpu)
mr = prior*np.mean(yh[y_t == +1] <= 0) + (1-prior)*np.mean(yh[y_t == -1] >= 0)
print("mr: {}".format(mr))