本文整理汇总了Python中chainer.training.Trainer方法的典型用法代码示例。如果您正苦于以下问题:Python training.Trainer方法的具体用法?Python training.Trainer怎么用?Python training.Trainer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.training
的用法示例。
在下文中一共展示了training.Trainer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def create_trainer(args, model):
# Setup an optimizer
# optimizer = chainer.optimizers.Adam()
optimizer = chainer.optimizers.SGD()
optimizer.setup(model)
# Load the MNIST dataset
train, test = chainer.datasets.get_mnist()
train_iter = MyIterator(train, args.batchsize, shuffle=False)
test_iter = MyIterator(test, args.batchsize, repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
return trainer
示例2: _get_mocked_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def _get_mocked_trainer(links, stop_trigger=(10, 'iteration')):
updater = mock.Mock()
optimizer = mock.Mock()
target = mock.Mock()
target.namedlinks.return_value = [
(str(i), link) for i, link in enumerate(links)]
optimizer.target = target
updater.get_all_optimizers.return_value = {'optimizer_name': optimizer}
updater.iteration = 0
updater.epoch = 0
updater.epoch_detail = 0
updater.is_new_epoch = True
iter_per_epoch = 10
def update():
time.sleep(0.001)
updater.iteration += 1
updater.epoch = updater.iteration // iter_per_epoch
updater.epoch_detail = updater.iteration / iter_per_epoch
updater.is_new_epoch = updater.epoch == updater.epoch_detail
updater.update = update
return training.Trainer(updater, stop_trigger)
示例3: train_voxelnet
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def train_voxelnet():
"""Training VoxelNet."""
config = parse_args()
model = get_model(config["model"])
devices = parse_devices(config['gpus'], config['updater']['name'])
train_data, test_data = load_dataset(config["dataset"])
train_iter, test_iter = create_iterator(train_data, test_data,
config['iterator'], devices,
config['updater']['name'])
class_weight = get_class_weight(config)
optimizer = create_optimizer(config['optimizer'], model)
updater = create_updater(train_iter, optimizer, config['updater'], devices)
trainer = training.Trainer(updater, config['end_trigger'], out=config['results'])
trainer = create_extension(trainer, test_iter, model,
config['extension'], devices=devices)
trainer.run()
chainer.serializers.save_npz(os.path.join(config['results'], 'model.npz'),
model)
示例4: train
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
model= Objective(network, loss=loss, gamma=gamma)
#optimizer = optimizers.SGD()
optimizer = optimizers.Adam()
optimizer.setup(model)
train = tuple_dataset.TupleDataset(X_tr, Y_tr)
test = tuple_dataset.TupleDataset(X_te, Y_te)
train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (n_epochs, 'epoch'))
trainer.run()
示例5: main
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def main(model):
train = read_data(fold=BUZZER_TRAIN_FOLD)
valid = read_data(fold=BUZZER_DEV_FOLD)
print('# train data: {}'.format(len(train)))
print('# valid data: {}'.format(len(valid)))
train_iter = chainer.iterators.SerialIterator(train, 64)
valid_iter = chainer.iterators.SerialIterator(valid, 64, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
updater = training.updaters.StandardUpdater(train_iter, optimizer, converter=convert_seq, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out=model.model_dir)
trainer.extend(extensions.Evaluator(valid_iter, model, converter=convert_seq, device=0))
record_trigger = training.triggers.MaxValueTrigger('validation/main/accuracy', (1, 'epoch'))
trainer.extend(extensions.snapshot_object(model, 'buzzer.npz'), trigger=record_trigger)
trainer.extend(extensions.LogReport())
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
]))
if not os.path.isdir(model.model_dir):
os.mkdir(model.model_dir)
trainer.run()
示例6: create_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def create_trainer(args, model):
# Setup an optimizer
#optimizer = chainer.optimizers.Adam()
optimizer = chainer.optimizers.SGD()
optimizer.setup(model)
# Load the datasets and mean file
mean = np.load(args.mean)
train = PreprocessedDataset(args.train, args.root, mean, insize)
val = PreprocessedDataset(args.val, args.root, mean, insize, False)
# These iterators load the images with subprocesses running in parallel to
# the training/validation.
train_iter = MyIterator(
train, args.batchsize, n_processes=args.loaderjob)
val_iter = MyIterator(
val, args.val_batchsize, repeat=False, n_processes=args.loaderjob)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(val_iter, model, device=args.gpu))
return trainer
示例7: test_linear_network
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def test_linear_network():
# To ensure repeatability of experiments
np.random.seed(1042)
# Load data set
dataset = get_dataset(True)
iterator = LtrIterator(dataset, repeat=True, shuffle=True)
eval_iterator = LtrIterator(dataset, repeat=False, shuffle=False)
# Create neural network with chainer and apply our loss function
predictor = links.Linear(None, 1)
loss = Ranker(predictor, listnet)
# Build optimizer, updater and trainer
optimizer = optimizers.Adam(alpha=0.2)
optimizer.setup(loss)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
# Evaluate loss before training
before_loss = eval(loss, eval_iterator)
# Train neural network
trainer.run()
# Evaluate loss after training
after_loss = eval(loss, eval_iterator)
# Assert precomputed values
assert_almost_equal(before_loss, 0.26958397)
assert_almost_equal(after_loss, 0.2326711)
示例8: _get_mock_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def _get_mock_trainer(self, out_path, trigger=None, updater=None):
class _MockTrainer(Trainer):
def __init__(
self, out_path, stop_trigger=IntervalTrigger(100, 'epoch'),
updater=None):
self.out = out_path
self.stop_trigger = stop_trigger
hyperparam = Hyperparameter()
hyperparam.lr = 0.005
optimizer = MagicMock()
optimizer.__class__.__name__ = 'MomentumSGD'
optimizer.hyperparam = hyperparam
if updater is None:
updater = MagicMock()
updater.epoch = 0
updater.iteration = 0
updater.get_optimizer.return_value = optimizer
self.updater = updater
@property
def elapsed_time(self):
return 0
def serialize(self, serializer):
pass
return _MockTrainer(out_path, trigger, updater)
示例9: _run_test
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def _run_test(self, tempdir, initial_flag):
n_data = 4
n_epochs = 3
outdir = os.path.join(tempdir, 'testresult')
# Prepare
model = Model()
classifier = links.Classifier(model)
optimizer = chainer.optimizers.Adam()
optimizer.setup(classifier)
dataset = Dataset([i for i in range(n_data)])
iterator = chainer.iterators.SerialIterator(dataset, 1, shuffle=False)
updater = training.updaters.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (n_epochs, 'epoch'), out=outdir)
extension = c.DumpGraph('main/loss', filename='test.dot')
trainer.extend(extension)
# Run
with chainer.using_config('keep_graph_on_report', initial_flag):
trainer.run()
# Check flag history
self.assertEqual(model.flag_history,
[True] + [initial_flag] * (n_data * n_epochs - 1))
# Check the dumped graph
graph_path = os.path.join(outdir, 'test.dot')
with open(graph_path) as f:
graph_dot = f.read()
# Check that only the first iteration is dumped
self.assertIn('Function1', graph_dot)
self.assertNotIn('Function2', graph_dot)
if c.is_graphviz_available():
self.assertTrue(os.path.exists(os.path.join(outdir, 'test.png')))
示例10: prepare
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def prepare(self, dirname='test', device=None):
outdir = os.path.join(self.temp_dir, dirname)
self.updater = training.updaters.StandardUpdater(
self.iterator, self.optimizer, device=device)
self.trainer = training.Trainer(
self.updater, (self.n_epochs, 'epoch'), out=outdir)
self.trainer.extend(training.extensions.FailOnNonNumber())
示例11: _prepare_multinode_snapshot
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def _prepare_multinode_snapshot(n, result):
n_units = 100
batchsize = 10
comm = create_communicator('naive')
model = L.Classifier(MLP(n_units, 10))
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)
optimizer.setup(model)
if comm.rank == 0:
train, _ = chainer.datasets.get_mnist()
else:
train, _ = None, None
train = chainermn.scatter_dataset(train, comm, shuffle=True)
train_iter = chainer.iterators.SerialIterator(train, batchsize)
updater = StandardUpdater(train_iter, optimizer)
trainer = Trainer(updater, out=result)
snapshot = extensions.snapshot(target=updater, autoload=True)
replica_sets = []
mn_snapshot = multi_node_snapshot(comm, snapshot, replica_sets)
mn_snapshot.initialize(trainer)
for _ in range(n):
updater.update()
return updater, mn_snapshot, trainer
示例12: train
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def train(args):
nz = args.nz
batch_size = args.batch_size
epochs = args.epochs
gpu = args.gpu
# CIFAR-10 images in range [-1, 1] (tanh generator outputs)
train, _ = datasets.get_cifar10(withlabel=False, ndim=3, scale=2)
train -= 1.0
train_iter = iterators.SerialIterator(train, batch_size)
z_iter = RandomNoiseIterator(GaussianNoiseGenerator(0, 1, args.nz),
batch_size)
optimizer_generator = optimizers.RMSprop(lr=0.00005)
optimizer_critic = optimizers.RMSprop(lr=0.00005)
optimizer_generator.setup(Generator())
optimizer_critic.setup(Critic())
updater = WassersteinGANUpdater(
iterator=train_iter,
noise_iterator=z_iter,
optimizer_generator=optimizer_generator,
optimizer_critic=optimizer_critic,
device=gpu)
trainer = training.Trainer(updater, stop_trigger=(epochs, 'epoch'))
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.LogReport(trigger=(1, 'iteration')))
trainer.extend(GeneratorSample(), trigger=(1, 'epoch'))
trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'critic/loss',
'critic/loss/real', 'critic/loss/fake', 'generator/loss']))
trainer.run()
示例13: _train_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def _train_trainer(self, examples):
"""Training with chainer trainer module"""
train_iter = SerialIterator(examples, args.batch_size)
optimizer = optimizers.Adam(alpha=args.lr)
optimizer.setup(self.nnet)
def loss_func(boards, target_pis, target_vs):
out_pi, out_v = self.nnet(boards)
l_pi = self.loss_pi(target_pis, out_pi)
l_v = self.loss_v(target_vs, out_v)
total_loss = l_pi + l_v
chainer.reporter.report({
'loss': total_loss,
'loss_pi': l_pi,
'loss_v': l_v,
}, observer=self.nnet)
return total_loss
updater = training.StandardUpdater(
train_iter, optimizer, device=args.device, loss_func=loss_func, converter=converter)
# Set up the trainer.
trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.out)
# trainer.extend(extensions.snapshot(), trigger=(args.epochs, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'main/loss_pi', 'main/loss_v', 'elapsed_time']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
示例14: main
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def main():
# Training settings
args = get_args()
# Set up a neural network to train
model = L.Classifier(Net())
if args.gpu >= 0:
# Make a specified GPU current
chainer.backends.cuda.get_device_from_id(args.gpu).use()
model.to_gpu() # Copy the model to the GPU
# Setup an optimizer
optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=args.momentum)
optimizer.setup(model)
# Load the MNIST dataset
train, test = chainer.datasets.get_mnist(ndim=3)
train_iter = chainer.iterators.SerialIterator(train, args.batch_size)
test_iter = chainer.iterators.SerialIterator(test, args.test_batch_size,
repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epochs, 'epoch'))
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport())
# Print selected entries of the log to stdout
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
# Send selected entries of the log to CMLE HP tuning system
trainer.extend(
HpReport(hp_metric_val='validation/main/loss', hp_metric_tag='my_loss'))
if args.resume:
# Resume from a snapshot
tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
if not os.path.exists(tmp_model_file):
subprocess.check_call([
'gsutil', 'cp', os.path.join(args.model_dir, MODEL_FILE_NAME),
tmp_model_file])
if os.path.exists(tmp_model_file):
chainer.serializers.load_npz(tmp_model_file, trainer)
trainer.run()
if args.model_dir:
tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
serializers.save_npz(tmp_model_file, model)
subprocess.check_call([
'gsutil', 'cp', tmp_model_file,
os.path.join(args.model_dir, MODEL_FILE_NAME)])
示例15: prepare_trainer
# 需要导入模块: from chainer import training [as 别名]
# 或者: from chainer.training import Trainer [as 别名]
def prepare_trainer(net,
optimizer_name,
lr,
momentum,
num_epochs,
train_data,
val_data,
logging_dir_path,
use_gpus):
if optimizer_name == "sgd":
optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
elif optimizer_name == "nag":
optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
else:
raise Exception("Unsupported optimizer: {}".format(optimizer_name))
optimizer.setup(net)
# devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
devices = (0,) if use_gpus else (-1,)
updater = training.updaters.StandardUpdater(
iterator=train_data["iterator"],
optimizer=optimizer,
device=devices[0])
trainer = training.Trainer(
updater=updater,
stop_trigger=(num_epochs, "epoch"),
out=logging_dir_path)
val_interval = 100000, "iteration"
log_interval = 1000, "iteration"
trainer.extend(
extension=extensions.Evaluator(
iterator=val_data["iterator"],
target=net,
device=devices[0]),
trigger=val_interval)
trainer.extend(extensions.dump_graph("main/loss"))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(
extensions.snapshot_object(
net,
"model_iter_{.updater.iteration}"),
trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(
extensions.PrintReport([
"epoch", "iteration", "main/loss", "validation/main/loss", "main/accuracy", "validation/main/accuracy",
"lr"]),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
return trainer