本文整理汇总了Python中chainer.iterators.SerialIterator方法的典型用法代码示例。如果您正苦于以下问题:Python iterators.SerialIterator方法的具体用法?Python iterators.SerialIterator怎么用?Python iterators.SerialIterator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.iterators
的用法示例。
在下文中一共展示了iterators.SerialIterator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_iterator_repeat
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def test_iterator_repeat(self):
dataset = [1, 2, 3, 4, 5, 6]
it = iterators.SerialIterator(dataset, 2, shuffle=False)
for i in range(3):
self.assertEqual(it.epoch, i)
self.assertAlmostEqual(it.epoch_detail, i + 0 / 6)
if i == 0:
self.assertIsNone(it.previous_epoch_detail)
else:
self.assertAlmostEqual(it.previous_epoch_detail, i - 2 / 6)
self.assertEqual(it.next(), [1, 2])
self.assertFalse(it.is_new_epoch)
self.assertAlmostEqual(it.epoch_detail, i + 2 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, i + 0 / 6)
self.assertEqual(it.next(), [3, 4])
self.assertFalse(it.is_new_epoch)
self.assertAlmostEqual(it.epoch_detail, i + 4 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, i + 2 / 6)
self.assertEqual(it.next(), [5, 6])
self.assertTrue(it.is_new_epoch)
self.assertAlmostEqual(it.epoch_detail, i + 6 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, i + 4 / 6)
示例2: test_iterator_not_repeat
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def test_iterator_not_repeat(self):
dataset = [1, 2, 3, 4, 5, 6]
it = iterators.SerialIterator(dataset, 2, repeat=False, shuffle=False)
self.assertAlmostEqual(it.epoch_detail, 0 / 6)
self.assertIsNone(it.previous_epoch_detail)
self.assertEqual(it.next(), [1, 2])
self.assertAlmostEqual(it.epoch_detail, 2 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, 0 / 6)
self.assertEqual(it.next(), [3, 4])
self.assertAlmostEqual(it.epoch_detail, 4 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, 2 / 6)
self.assertEqual(it.next(), [5, 6])
self.assertTrue(it.is_new_epoch)
self.assertEqual(it.epoch, 1)
self.assertAlmostEqual(it.epoch_detail, 6 / 6)
self.assertAlmostEqual(it.previous_epoch_detail, 4 / 6)
for i in range(2):
self.assertRaises(StopIteration, it.next)
示例3: test_iterator_not_repeat_not_even
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def test_iterator_not_repeat_not_even(self):
dataset = [1, 2, 3, 4, 5]
it = iterators.SerialIterator(dataset, 2, repeat=False, shuffle=False)
self.assertAlmostEqual(it.epoch_detail, 0 / 5)
self.assertIsNone(it.previous_epoch_detail)
self.assertEqual(it.next(), [1, 2])
self.assertAlmostEqual(it.epoch_detail, 2 / 5)
self.assertAlmostEqual(it.previous_epoch_detail, 0 / 5)
self.assertEqual(it.next(), [3, 4])
self.assertAlmostEqual(it.epoch_detail, 4 / 5)
self.assertAlmostEqual(it.previous_epoch_detail, 2 / 5)
self.assertEqual(it.next(), [5])
self.assertTrue(it.is_new_epoch)
self.assertEqual(it.epoch, 1)
self.assertAlmostEqual(it.epoch_detail, 5 / 5)
self.assertAlmostEqual(it.previous_epoch_detail, 4 / 5)
self.assertRaises(StopIteration, it.next)
示例4: check_custom
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def check_custom(comm, length, bs):
assert bs > 0
assert length > 0
a = list(range(comm.rank, length, comm.size))
b = list(range(comm.rank, length, comm.size))
c = list(range(comm.rank, length, comm.size))
model = ExampleModel()
dataset = TupleDataset(a, b, c)
iterator = SerialIterator(dataset, bs, shuffle=False, repeat=False)
evaluator = CustomMultiNodeEvaluator(comm, iterator, model)
result = evaluator(None)
iterator.reset()
expected = comm.allreduce_obj(sum(2 for batch in iterator))
if comm.rank == 0:
assert expected == result
else:
assert result is None
示例5: setUp
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def setUp(self):
bboxes = [generate_random_bbox(5, (256, 324), 24, 120)
for _ in range(10)]
areas = [[np.array([(bb[2] - bb[0]) * bb[3] - bb[0]]) for bb in bbox]
for bbox in bboxes]
labels = 2 * np.ones((10, 5), dtype=np.int32)
crowdeds = np.zeros((10, 5))
self.dataset = TupleDataset(
np.random.uniform(size=(10, 3, 32, 48)),
bboxes, labels, areas, crowdeds)
self.link = _DetectionStubLink(bboxes, labels)
self.iterator = SerialIterator(
self.dataset, 5, repeat=False, shuffle=False)
self.evaluator = DetectionCOCOEvaluator(
self.iterator, self.link, label_names=('cls0', 'cls1', 'cls2'))
self.expected_ap = 1
示例6: setUp
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def setUp(self):
self.label_names = ('a', 'b', 'c')
imgs = np.random.uniform(size=(1, 3, 2, 3))
# There are labels for 'a' and 'b', but none for 'c'.
pred_labels = np.array([[[1, 1, 1], [0, 0, 1]]])
gt_labels = np.array([[[1, 0, 0], [0, -1, 1]]])
self.iou_a = 1 / 3
self.iou_b = 2 / 4
self.pixel_accuracy = 3 / 5
self.class_accuracy_a = 1 / 3
self.class_accuracy_b = 2 / 2
self.miou = np.mean((self.iou_a, self.iou_b))
self.mean_class_accuracy = np.mean(
(self.class_accuracy_a, self.class_accuracy_b))
self.dataset = TupleDataset(imgs, gt_labels)
self.link = _SemanticSegmentationStubLink(pred_labels)
self.iterator = SerialIterator(
self.dataset, 5, repeat=False, shuffle=False)
self.evaluator = SemanticSegmentationEvaluator(
self.iterator, self.link, self.label_names)
示例7: test_apply_to_iterator_with_infinite_iterator
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def test_apply_to_iterator_with_infinite_iterator(self):
def func(*in_values):
n_sample = len(in_values[0])
return [np.random.uniform(size=(48, 64)) for _ in range(n_sample)]
dataset = []
for _ in range(5):
H, W = np.random.randint(8, 16, size=2)
dataset.append(np.random.randint(0, 256, size=(3, H, W)))
iterator = SerialIterator(dataset, 2)
in_values, out_values, rest_values = apply_to_iterator(func, iterator)
for _ in range(10):
next(in_values[0])
for _ in range(10):
next(out_values[0])
示例8: _test_r2_score_evaluator
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_r2_score_evaluator(inputs):
predictor = DummyPredictor()
x0, x1, _ = inputs
dataset = NumpyTupleDataset(x0, x1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(iterator, predictor, name='train')
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x1)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例9: _test_r2_score_evaluator_ignore_nan
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_r2_score_evaluator_ignore_nan(inputs):
predictor = DummyPredictor()
x0, _, x2 = inputs
dataset = NumpyTupleDataset(x0, x2)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(
iterator, predictor, name='train', ignore_nan=True)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x2, ignore_nan=True)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例10: _test_r2_score_evaluator_ignore_nan_with_nonnan_value
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_r2_score_evaluator_ignore_nan_with_nonnan_value(inputs):
predictor = DummyPredictor()
x0, x1, _ = inputs
dataset = NumpyTupleDataset(x0, x1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(
iterator, predictor, name='train', ignore_nan=True)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x1, ignore_nan=True)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例11: _test_prc_auc_evaluator_default_args
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_prc_auc_evaluator_default_args(data0):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data0)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = PRCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected_prc_auc = 0.7916
pytest.approx(observation['target/prc_auc'], expected_prc_auc)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/prc_auc'], expected_prc_auc)
示例12: _test_prc_auc_evaluator_with_labels
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_prc_auc_evaluator_with_labels(data1):
"""test `pos_labels` and `ignore_labels` behavior"""
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = PRCAUCEvaluator(
iterator, predictor, name='val',
pos_labels=[1, 2], ignore_labels=-1,
)
# --- test evaluate ---
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected_prc_auc = 0.7916
pytest.approx(observation['target/prc_auc'], expected_prc_auc)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['val/main/prc_auc'], expected_prc_auc)
示例13: _test_prc_auc_evaluator_raise_error
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_prc_auc_evaluator_raise_error(data, raise_value_error=True):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = PRCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None,
raise_value_error=raise_value_error
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
return observation['target/prc_auc']
示例14: _test_roc_auc_evaluator_default_args
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def _test_roc_auc_evaluator_default_args(data0):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data0)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = ROCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected_roc_auc = 0.75
# print('observation ', observation)
assert observation['target/roc_auc'] == expected_roc_auc
# --- test __call__ ---
result = evaluator()
# print('result ', result)
assert result['train/main/roc_auc'] == expected_roc_auc
示例15: train
# 需要导入模块: from chainer import iterators [as 别名]
# 或者: from chainer.iterators import SerialIterator [as 别名]
def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
model= Objective(network, loss=loss, gamma=gamma)
#optimizer = optimizers.SGD()
optimizer = optimizers.Adam()
optimizer.setup(model)
train = tuple_dataset.TupleDataset(X_tr, Y_tr)
test = tuple_dataset.TupleDataset(X_te, Y_te)
train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (n_epochs, 'epoch'))
trainer.run()