本文整理汇总了Python中chainer.initializers方法的典型用法代码示例。如果您正苦于以下问题:Python chainer.initializers方法的具体用法?Python chainer.initializers怎么用?Python chainer.initializers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer
的用法示例。
在下文中一共展示了chainer.initializers方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def __init__(self, dtype=None):
W = None
bias = None
if dtype is not None:
self.dtype = dtype
W = chainer.initializers.Normal(dtype=self.dtype)
bias = chainer.initializers.Zero(dtype=self.dtype)
super(ExampleModel, self).__init__()
with self.init_scope():
self.a = chainer.links.Linear(2, 3, initialW=W, initial_bias=bias)
self.b = chainer.links.Linear(3, 4, initialW=W, initial_bias=bias)
self.c = chainer.links.Linear(None, 5, initialW=W,
initial_bias=bias)
示例2: __init__
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def __init__(self, pretrained_model, n_layers, downsample_fb=False):
super(ResNetLayers, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
conv_kwargs = {'initialW': constant.Zero()}
else:
# employ default initializers used in the original paper
conv_kwargs = {'initialW': normal.HeNormal(scale=1.0)}
kwargs = conv_kwargs.copy()
kwargs['downsample_fb'] = downsample_fb
if n_layers == 50:
block = [3, 4, 6, 3]
elif n_layers == 101:
block = [3, 4, 23, 3]
elif n_layers == 152:
block = [3, 8, 36, 3]
else:
raise ValueError('The n_layers argument should be either 50, 101,'
' or 152, but {} was given.'.format(n_layers))
with self.init_scope():
self.conv1 = Convolution2D(3, 64, 7, 2, 3, **conv_kwargs)
self.bn1 = BatchNormalization(64)
self.res2 = BuildingBlock(block[0], 64, 64, 256, 1, **kwargs)
self.res3 = BuildingBlock(block[1], 256, 128, 512, 2, **kwargs)
self.res4 = BuildingBlock(block[2], 512, 256, 1024, 2, **kwargs)
self.res5 = BuildingBlock(block[3], 1024, 512, 2048, 2, **kwargs)
self.fc6 = Linear(2048, 1000)
if pretrained_model and pretrained_model.endswith('.caffemodel'):
_retrieve(n_layers, 'ResNet-{}-model.npz'.format(n_layers),
pretrained_model, self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例3: zerograd
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def zerograd(self):
super(Parameter, self).zerograd()
if not self.is_initialized:
dtype = getattr(self.initializer, 'dtype', None)
self._grad_initializer = initializers.Zero(dtype)
示例4: initialize
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def initialize(self, shape):
"""Initializes the uninitialized variable.
Uninitialized variable is a variable created with the data array set to
None. This method creates and initializes the data array. The shape of
the variable can be left unknown until this method is called.
Args:
shape (tuple of int): Shape of the data array.
"""
device = self._initial_device
assert device is not None
xp = device.xp
data = initializers.generate_array(
self.initializer, shape, xp, device=device)
data = chainer.memory_layouts._transpose_array(data, None, self.layout)
if self._grad_initializer is None:
grad = None
else:
grad = initializers.generate_array(
self._grad_initializer, shape, xp, device=device)
grad = chainer.memory_layouts._transpose_array(
grad, None, self.layout)
self._set_array(data, layout_check=False)
self._set_grad(grad, layout_check=False)
# Convert the array for iDeep.
# TODO(niboshi): This could be done in generate_array().
if isinstance(self._initial_device, intel64.Intel64Device):
self.to_intel64()
示例5: __init__
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def __init__(self, pretrained_model='auto', n_layers=16):
super(VGGLayers, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
init = constant.Zero()
kwargs = {'initialW': init, 'initial_bias': init}
else:
# employ default initializers used in the original paper
kwargs = {
'initialW': normal.Normal(0.01),
'initial_bias': constant.Zero(),
}
if n_layers not in [16, 19]:
raise ValueError(
'The n_layers argument should be either 16 or 19, '
'but {} was given.'.format(n_layers)
)
with self.init_scope():
self.conv1_1 = Convolution2D(3, 64, 3, 1, 1, **kwargs)
self.conv1_2 = Convolution2D(64, 64, 3, 1, 1, **kwargs)
self.conv2_1 = Convolution2D(64, 128, 3, 1, 1, **kwargs)
self.conv2_2 = Convolution2D(128, 128, 3, 1, 1, **kwargs)
self.conv3_1 = Convolution2D(128, 256, 3, 1, 1, **kwargs)
self.conv3_2 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv3_3 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv4_1 = Convolution2D(256, 512, 3, 1, 1, **kwargs)
self.conv4_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv4_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_1 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.fc6 = Linear(512 * 7 * 7, 4096, **kwargs)
self.fc7 = Linear(4096, 4096, **kwargs)
self.fc8 = Linear(4096, 1000, **kwargs)
if n_layers == 19:
self.conv3_4 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv4_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
if pretrained_model == 'auto':
if n_layers == 16:
_retrieve(
'VGG_ILSVRC_16_layers.npz',
'https://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
'caffe/VGG_ILSVRC_16_layers.caffemodel',
self)
else:
_retrieve(
'VGG_ILSVRC_19_layers.npz',
'http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
'caffe/VGG_ILSVRC_19_layers.caffemodel',
self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例6: __init__
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def __init__(self, pretrained_model='auto'):
super(GoogLeNet, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
kwargs = {'initialW': constant.Zero()}
else:
# employ default initializers used in BVLC. For more detail, see
# https://github.com/chainer/chainer/pull/2424#discussion_r109642209
kwargs = {'initialW': uniform.LeCunUniform(scale=1.0)}
with self.init_scope():
self.conv1 = Convolution2D(3, 64, 7, stride=2, pad=3, **kwargs)
self.conv2_reduce = Convolution2D(64, 64, 1, **kwargs)
self.conv2 = Convolution2D(64, 192, 3, stride=1, pad=1, **kwargs)
self.inc3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inc3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.inc4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inc4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inc4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inc4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inc4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.inc5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inc5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.loss3_fc = Linear(1024, 1000, **kwargs)
self.loss1_conv = Convolution2D(512, 128, 1, **kwargs)
self.loss1_fc1 = Linear(2048, 1024, **kwargs)
self.loss1_fc2 = Linear(1024, 1000, **kwargs)
self.loss2_conv = Convolution2D(528, 128, 1, **kwargs)
self.loss2_fc1 = Linear(2048, 1024, **kwargs)
self.loss2_fc2 = Linear(1024, 1000, **kwargs)
if pretrained_model == 'auto':
_retrieve(
'bvlc_googlenet.npz',
'http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel',
self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例7: __init__
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import initializers [as 别名]
def __init__(self,
n_class=None, pretrained_model=None, mean=None,
initialW=None, initial_bias=None):
param, path = utils.prepare_pretrained_model(
{'n_class': n_class, 'mean': mean},
pretrained_model, self._models,
{'n_class': 1000, 'mean': _imagenet_mean})
self.mean = param['mean']
if initialW is None:
# Employ default initializers used in the original paper.
initialW = normal.Normal(0.01)
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
initialW = constant.Zero()
kwargs = {'initialW': initialW, 'initial_bias': initial_bias}
super(VGG16, self).__init__()
with self.init_scope():
self.conv1_1 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs)
self.conv1_2 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs)
self.pool1 = _max_pooling_2d
self.conv2_1 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs)
self.conv2_2 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs)
self.pool2 = _max_pooling_2d
self.conv3_1 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.conv3_2 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.conv3_3 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.pool3 = _max_pooling_2d
self.conv4_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv4_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv4_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.pool4 = _max_pooling_2d
self.conv5_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv5_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv5_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.pool5 = _max_pooling_2d
self.fc6 = Linear(None, 4096, **kwargs)
self.fc6_relu = relu
self.fc6_dropout = dropout
self.fc7 = Linear(None, 4096, **kwargs)
self.fc7_relu = relu
self.fc7_dropout = dropout
self.fc8 = Linear(None, param['n_class'], **kwargs)
self.prob = softmax
if path:
chainer.serializers.load_npz(path, self)