本文整理汇总了Python中chainer.functions.transpose方法的典型用法代码示例。如果您正苦于以下问题:Python functions.transpose方法的具体用法?Python functions.transpose怎么用?Python functions.transpose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.functions
的用法示例。
在下文中一共展示了functions.transpose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, x):
if self.dr:
with chainer.using_config('train', True):
x = F.dropout(x, self.dr)
if self.gap:
x = F.sum(x, axis=(2,3))
N = x.shape[0]
#Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
feature = F.reshape(F.leaky_relu(x), (N, -1))
m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
m0 = F.broadcast_to(m, (N, self.B * self.C, N))
m1 = F.transpose(m0, (2, 1, 0))
d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
h = F.concat([feature, d])
h = self.l(h)
return h
示例2: block_embed
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def block_embed(embed, x, dropout=0.):
"""Embedding function followed by convolution
Args:
embed (callable): A :func:`~chainer.functions.embed_id` function
or :class:`~chainer.links.EmbedID` link.
x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
:class:`cupy.ndarray`): Input variable, which
is a :math:`(B, L)`-shaped int array. Its first dimension
:math:`(B)` is assumed to be the *minibatch dimension*.
The second dimension :math:`(L)` is the length of padded
sentences.
dropout (float): Dropout ratio.
Returns:
~chainer.Variable: Output variable. A float array with shape
of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions
of word embedding.
"""
e = embed(x)
e = F.dropout(e, ratio=dropout)
e = F.transpose(e, (0, 2, 1))
e = e[:, :, :, None]
return e
示例3: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, x, mask):
self.m.W.data = self.xp.array(self.maskW) #mask windows are set by 1
h = self.c(x*mask) #(B,C,H,W)
B,C,H,W = h.shape
b = F.transpose(F.broadcast_to(self.c.b,(B,H,W,C)),(0,3,1,2))
h = h - b
mask_sums = self.m(mask)
mask_new = (self.xp.sign(mask_sums.data-0.5)+1.0)*0.5
mask_new_b = mask_new.astype("bool")
mask_sums = F.where(mask_new_b,mask_sums,0.01*Variable(self.xp.ones(mask_sums.shape).astype("f")))
h = h/mask_sums + b
mask_new = Variable(mask_new)
h = F.where(mask_new_b, h, Variable(self.xp.zeros(h.shape).astype("f")))
if self.bn:
h = self.batchnorm(h)
if self.noise:
h = add_noise(h)
if self.dropout:
h = F.dropout(h)
if not self.activation is None:
h = self.activation(h)
return h, mask_new
示例4: embed_xs_with_prediction
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def embed_xs_with_prediction(self, xs, labels=None, batch='concat'):
predicted_exs = self.bilm.predict_embed(
xs, self.embed.W,
labels=labels,
dropout=self.config['dropout'],
mode=self.config['mode'],
temp=self.config['temp'],
word_lower_bound=self.config['word_lower_bound'],
gold_lower_bound=self.config['gold_lower_bound'],
gumbel=self.config['gumbel'],
residual=self.config['residual'],
wordwise=self.config['wordwise'],
add_original=self.config['add_original'],
augment_ratio=self.config['augment_ratio'])
if batch == 'concat':
predicted_ex_block = F.pad_sequence(predicted_exs, padding=0.)
predicted_ex_block = F.transpose(
predicted_ex_block, (0, 2, 1))[:, :, :, None]
return predicted_ex_block
elif batch == 'list':
return predicted_exs
else:
raise NotImplementedError
示例5: inverse
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def inverse(self, y):
scale_sqr = self.scale * self.scale
batch, y_channels, y_height, y_width = y.shape
assert (y_channels % scale_sqr == 0)
x_channels = y_channels // scale_sqr
x_height = y_height * self.scale
x_width = y_width * self.scale
x = F.transpose(y, axes=(0, 2, 3, 1))
x = x.reshape(batch, y_height, y_width, scale_sqr, x_channels)
d3_split_seq = F.split_axis(x, indices_or_sections=(x.shape[3] // self.scale), axis=3)
d3_split_seq = [t.reshape(batch, y_height, x_width, x_channels) for t in d3_split_seq]
x = F.stack(d3_split_seq, axis=0)
x = F.transpose(F.swapaxes(x, axis1=0, axis2=1), axes=(0, 2, 1, 3, 4)).reshape(
batch, x_height, x_width, x_channels)
x = F.transpose(x, axes=(0, 3, 1, 2))
return x
示例6: process_trajectory
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def process_trajectory(self, l):
"""This is the time-dependent convolution operation, applied to a trajectory (in order).
"""
shp = l.shape[0]
# First dim is batchsize=1, then either 1 channel for 2d conv or n_feat channels
# for 1d conv.
l = F.expand_dims(l, axis=0)
l = F.transpose(l, (0, 2, 1))
l = self.traj_c0(l)
l = F.leaky_relu(l)
l = self.traj_c1(l)
l = F.leaky_relu(l)
l = F.sum(l, axis=(0, 2)) / l.shape[0] / l.shape[2]
l = F.expand_dims(l, axis=0)
l = self.traj_d0(l)
l = F.tile(l, (shp, 1))
return l
示例7: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, images, label=None):
if self.uses_original_data:
# handle each individual view as increase in batch size
batch_size, num_channels, height, width = images.shape
images = F.reshape(images, (batch_size, num_channels, height, 4, -1))
images = F.transpose(images, (0, 3, 1, 2, 4))
images = F.reshape(images, (batch_size * 4, num_channels, height, width // 4))
batch_size = images.shape[0]
h = self.localization_net(images)
new_batch_size = h.shape[0]
batch_size_increase_factor = new_batch_size // batch_size
images = F.concat([images for _ in range(batch_size_increase_factor)], axis=0)
if label is None:
return self.recognition_net(images, h)
return self.recognition_net(images, h, label)
示例8: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, input_ids, input_mask, token_type_ids):
final_hidden = self.bert.get_sequence_output(
input_ids,
input_mask,
token_type_ids)
batch_size = final_hidden.shape[0]
seq_length = final_hidden.shape[1]
hidden_size = final_hidden.shape[2]
final_hidden_matrix = F.reshape(
final_hidden, [batch_size * seq_length, hidden_size])
logits = self.output(final_hidden_matrix)
logits = F.reshape(logits, [batch_size, seq_length, 2])
logits = logits - (1 - input_mask[:, :, None]) * 1000. # ignore pads
logits = F.transpose(logits, [2, 0, 1])
unstacked_logits = F.separate(logits, axis=0)
(start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])
return (start_logits, end_logits)
示例9: _load_projection
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def _load_projection(self):
cnn_options = self._options['char_cnn']
filters = cnn_options['filters']
n_filters = sum(f[1] for f in filters)
with self.init_scope():
self._projection = L.Linear(
n_filters, self.output_dim, nobias=False)
with h5py.File(cached_path(self._weight_file), 'r') as fin:
weight = fin['CNN_proj']['W_proj'][...]
bias = fin['CNN_proj']['b_proj'][...]
self._projection.W.data[:] = numpy.transpose(weight)
self._projection.b.data[:] = bias
self._projection.W._requires_grad = self.requires_grad
self._projection.b._requires_grad = self.requires_grad
示例10: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, query, key, value, mask=None):
"""
Perform attention on the value array, using the query and key parameters for calculating the attention mask.
:param query: matrix of shape (batch_size, num_timesteps, transformer_size) that is used for attention mask calculation
:param key: matrix of shape (batch_size, num_timesteps, transformer_size) that is used for attention mask calculation
:param value: matrix of shape (batch_size, num_timesteps, transformer_size) that is used for attention calculation
:param mask: mask that can be used to mask out parts of the feature maps and avoid attending to those parts
:return: the attended feature map `value`.
"""
if mask is not None:
mask = mask[:, self.xp.newaxis, ...]
batch_size = len(query)
query, key, value = [self.project(linear, x, batch_size) for linear, x in zip(self.linears, (query, key, value))]
x, self.attention = self.attention_implementation(query, key, value, mask=mask, dropout_ratio=self.dropout_ratio)
x = F.transpose(x, (0, 2, 1, 3))
x = F.reshape(x, (batch_size, -1, self.num_heads * self.key_dimensionality))
return self.linears[-1](x, n_batch_axes=2)
示例11: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, x):
N = x.data.shape[0]
h = F.leaky_relu(self.c0_0(x))
h = F.leaky_relu(self.bn0_1(self.c0_1(h)))
h = F.leaky_relu(self.bn1_0(self.c1_0(h)))
h = F.leaky_relu(self.bn1_1(self.c1_1(h)))
h = F.leaky_relu(self.bn2_0(self.c2_0(h)))
h = F.leaky_relu(self.bn2_1(self.c2_1(h)))
feature = F.reshape(F.leaky_relu(self.c3_0(h)), (N, 8192))
m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
m0 = F.broadcast_to(m, (N, self.B * self.C, N))
m1 = F.transpose(m0, (2, 1, 0))
d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
h = F.concat([feature, d])
return self.l4(h)
示例12: _generate_fake_video
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def _generate_fake_video(self, z_slow, z_fast):
n_b, z_fast_dim, n_frames = z_fast.shape
self.batchsize = n_b
z_fast = F.reshape(F.transpose(
z_fast, [0, 2, 1]), (n_b * n_frames, z_fast_dim))
n_b, z_slow_dim = z_slow.shape
z_slow = F.reshape(
F.broadcast_to(F.reshape(z_slow, (n_b, 1, z_slow_dim)),
(n_b, n_frames, z_slow_dim)),
(n_b * n_frames, z_slow_dim))
with chainer.using_config('train', True):
fake_video = self.vgen(z_slow, z_fast)
_, n_ch, h, w = fake_video.shape
fake_video = F.transpose(
F.reshape(fake_video, (n_b, n_frames, n_ch, h, w)),
[0, 2, 1, 3, 4])
return fake_video
示例13: get_transform_params
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def get_transform_params(self, features):
batch_size, num_channels, feature_height, feature_weight = features.shape
features = F.reshape(features, (batch_size, num_channels, -1))
features = F.transpose(features, (0, 2, 1))
target = chainer.Variable(self.xp.zeros((batch_size, 1, 6), dtype=chainer.get_dtype()))
for _ in range(self.num_bboxes_to_localize):
embedded_params = self.param_embedder(target.array, n_batch_axes=2)
embedded_params = self.positional_encoding(embedded_params)
decoded = self.decoder(embedded_params, features, None, self.mask)
params = self.param_predictor(decoded, n_batch_axes=2)
target = F.concat([target, params[:, -1:]])
target = F.reshape(target[:, 1:], (-1,) + target.shape[2:])
transform_params = rotation_dropout(F.reshape(target, (-1, 2, 3)), ratio=self.dropout_ratio)
return transform_params
示例14: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, distances, points1, points2):
"""
Args:
distances (numpy.ndarray or cupy.ndarray):
3-dim array (bs, num_point2, num_point1)
points1 (Variable): 3-dim (batch_size, num_point1, ch1)
points2 (Variable): 3-dim (batch_size, num_point2, ch2)
points2 is deeper, rich feature. num_point1 > num_point2
Returns (Variable): 3-dim (batch_size, num_point1, ch1+ch2)
"""
# h: interpolated_points (batch_size, num_point1, ch1+ch2)
h = self.interpolation(distances, points1, points2)
# h: interpolated_points (batch_size, ch1+ch2, num_point1, 1)
h = functions.transpose(h, (0, 2, 1))[:, :, :, None]
for conv_block in self.feature_extractor_list:
h = conv_block(h)
h = functions.transpose(h[:, :, :, 0], (0, 2, 1))
return h # h (bs, num_point, ch')
示例15: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import transpose [as 别名]
def __call__(self, coord_points, feature_points=None):
# coord_points (batch_size, num_point, coord_dim)
# feature_points (batch_size, num_point, ch)
# num_point, ch: coord_dim
# grouped_points (batch_size, k, num_sample, channel)
# center_points (batch_size, k, coord_dim)
grouped_points, center_points = self.sampling_grouping(
coord_points, feature_points=feature_points)
# set alias `h` -> (bs, channel, num_sample, k)
# Note: transpose may be removed by optimizing shape sequence for sampling_groupoing
h = functions.transpose(grouped_points, (0, 3, 2, 1))
# h (bs, ch, num_sample_in_region, k=num_group)
for conv_block in self.feature_extractor_list:
h = conv_block(h)
# TODO: try other option of pooling function
h = functions.max(h, axis=2, keepdims=True)
# h (bs, ch, 1, k=num_group)
for conv_block in self.head_list:
h = conv_block(h)
h = functions.transpose(h[:, :, 0, :], (0, 2, 1))
return center_points, h # (bs, k, coord), h (bs, k, ch')