当前位置: 首页>>代码示例>>Python>>正文


Python functions.tanh方法代码示例

本文整理汇总了Python中chainer.functions.tanh方法的典型用法代码示例。如果您正苦于以下问题:Python functions.tanh方法的具体用法?Python functions.tanh怎么用?Python functions.tanh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chainer.functions的用法示例。


在下文中一共展示了functions.tanh方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __call__(self, prev_hg, prev_he, prev_ce, x, v, r, u):
        xu = cf.concat((x, u), axis=1)
        xu = self.downsample_xu(xu)
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_he, prev_hg, xu, v, r), axis=1)
        gate_inputs = self.lstm(lstm_input)

        if self.use_cuda_kernel:
            next_h, next_c = CoreFunction()(gate_inputs, prev_ce)
        else:
            forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
                gate_inputs, 4, axis=1)

            forget_gate = cf.sigmoid(forget_gate_input)
            input_gate = cf.sigmoid(input_gate_input)
            next_c = forget_gate * prev_ce + input_gate * cf.tanh(tanh_input)
            output_gate = cf.sigmoid(output_gate_input)
            next_h = output_gate * cf.tanh(next_c)

        return next_h, next_c 
开发者ID:musyoku,项目名称:chainer-gqn,代码行数:25,代码来源:inference.py

示例2: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __call__(self, prev_hg, prev_cg, prev_z, v, r, prev_u):
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_hg, v, r, prev_z), axis=1)
        gate_inputs = self.lstm(lstm_input)

        forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
            gate_inputs, 4, axis=1)

        forget_gate = cf.sigmoid(forget_gate_input)
        input_gate = cf.sigmoid(input_gate_input)
        next_c = forget_gate * prev_cg + input_gate * cf.tanh(tanh_input)
        output_gate = cf.sigmoid(output_gate_input)
        next_h = output_gate * cf.tanh(next_c)

        next_u = self.upsample_h(next_h) + prev_u

        return next_h, next_c, next_u 
开发者ID:musyoku,项目名称:chainer-gqn,代码行数:22,代码来源:generator.py

示例3: bound_by_tanh

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def bound_by_tanh(x, low, high):
    """Bound a given value into [low, high] by tanh.

    Args:
        x (chainer.Variable): value to bound
        low (numpy.ndarray): lower bound
        high (numpy.ndarray): upper bound
    Returns: chainer.Variable
    """
    assert isinstance(x, chainer.Variable)
    assert low is not None
    assert high is not None
    xp = cuda.get_array_module(x.array)
    x_scale = (high - low) / 2
    x_scale = xp.expand_dims(xp.asarray(x_scale), axis=0)
    x_mean = (high + low) / 2
    x_mean = xp.expand_dims(xp.asarray(x_mean), axis=0)
    return F.tanh(x) * x_scale + x_mean 
开发者ID:chainer,项目名称:chainerrl,代码行数:20,代码来源:bound_by_tanh.py

示例4: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __call__(self, x):
        h = F.relu(self.conv1_1(x))
        h = F.relu(self.conv1_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)
        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.spatial_pyramid_pooling_2d(h, 3, F.MaxPooling2D)
        h = F.tanh(self.fc4(h))
        h = F.dropout(h, ratio=.5, train=self.train)
        h = F.tanh(self.fc5(h))
        h = F.dropout(h, ratio=.5, train=self.train)
        h = self.fc6(h)
        return h 
开发者ID:oyam,项目名称:Semantic-Segmentation-using-Adversarial-Networks,代码行数:21,代码来源:spp_discriminator.py

示例5: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __call__(self, x, h, c):
        hy = []
        cy = []
        for i, name in enumerate(self.x_amps.layer_names):
            hx_i = h[i]
            cx_i = c[i]
            gates = self.x_amps[name](x) + self.h_amps[name](hx_i)
            i_gate, f_gate, c_gate, o_gate = F.split_axis(gates, indices_or_sections=4, axis=1)
            i_gate = F.sigmoid(i_gate)
            f_gate = F.sigmoid(f_gate)
            c_gate = F.tanh(c_gate)
            o_gate = F.sigmoid(o_gate)
            cy_i = (f_gate * cx_i) + (i_gate * c_gate)
            hy_i = o_gate * F.sigmoid(cy_i)
            cy.append(cy_i)
            hy.append(hy_i)
            x = self.dropout(hy_i)
        return hy, cy 
开发者ID:osmr,项目名称:imgclsmob,代码行数:20,代码来源:diaresnet.py

示例6: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __call__(self, x):
        if self.model_name == 'rnn' or self.model_name == 'lstm':
            h0 = self.embed(x[:, self.window_size - 1])
            h1 = self.l1(h0)
            # h2 = self.l2(F.dropout(h1))
            y = self.l3(h1)
        if self.model_name == 'lr' or self.model_name == '2FFNN':
            h = self.embed(x)
            h = h.reshape((h.shape[0], h.shape[1] * h.shape[2]))
        if self.model_name == 'lr':
            y = self.lr(h)
        if self.model_name == '2FFNN':
            y = self.nn1(h)
            y = F.tanh(y)
            y = self.nn2(y)
        return y


# Dataset iterator to create a batch of sequences at different positions.
# This iterator returns a pair of current words and the next words. Each
# example is a part of sequences starting from the different offsets
# equally spaced within the whole sequence. 
开发者ID:vecto-ai,项目名称:vecto,代码行数:24,代码来源:language_modeling.py

示例7: attend

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def attend(self, encoded_features):
        self.out_lstm.reset_state()
        transformed_encoded_features = F.concat([F.expand_dims(self.transform_encoded_features(feature), axis=1) for feature in encoded_features], axis=1)
        concat_encoded_features = F.concat([F.expand_dims(e, axis=1) for e in encoded_features], axis=1)

        lstm_output = self.xp.zeros_like(encoded_features[0])
        outputs = []
        for _ in range(self.num_labels):
            transformed_lstm_output = self.transform_out_lstm_feature(lstm_output)
            attended_feats = []
            for transformed_encoded_feature in F.separate(transformed_encoded_features, axis=1):
                attended_feat = transformed_encoded_feature + transformed_lstm_output
                attended_feat = F.tanh(attended_feat)
                attended_feats.append(self.generate_attended_feat(attended_feat))

            attended_feats = F.concat(attended_feats, axis=1)
            alphas = F.softmax(attended_feats, axis=1)

            lstm_input_feature = F.batch_matmul(alphas, concat_encoded_features, transa=True)
            lstm_input_feature = F.squeeze(lstm_input_feature, axis=1)
            lstm_output = self.out_lstm(lstm_input_feature)
            outputs.append(lstm_output)
        return outputs 
开发者ID:Bartzi,项目名称:see,代码行数:25,代码来源:fsns.py

示例8: get_gaussian_params

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def get_gaussian_params(self, x):
        h = F.tanh(self.l1(x))
        h = self.l2(h)

        pi = h[:, :self.gaussian_mixtures]
        mu_var_dim = self.gaussian_mixtures * self.input_dim
        mu = h[:, self.gaussian_mixtures:self.gaussian_mixtures + mu_var_dim]
        log_var = h[:, self.gaussian_mixtures + mu_var_dim:]

        n_batch = x.shape[0]

        # mixing coefficients
        pi = F.reshape(pi, (n_batch, self.gaussian_mixtures))
        pi = F.softmax(pi, axis=1)

        # mean
        mu = F.reshape(mu, (n_batch, self.gaussian_mixtures, self.input_dim))

        # log variance
        log_var = F.reshape(
            log_var, (n_batch, self.gaussian_mixtures, self.input_dim))

        return pi, mu, log_var 
开发者ID:chainer,项目名称:models,代码行数:25,代码来源:mdn.py

示例9: x_tanh

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def x_tanh(x):
    return 0.2*x + F.tanh(x) 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:4,代码来源:models_1d.py

示例10: __init__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __init__(self, obs_size, action_space,
                 n_hidden_layers=2, n_hidden_channels=64,
                 bound_mean=None):
        assert bound_mean in [False, True]
        super().__init__()
        hidden_sizes = (n_hidden_channels,) * n_hidden_layers
        with self.init_scope():
            self.pi = policies.FCGaussianPolicyWithStateIndependentCovariance(
                obs_size, action_space.low.size,
                n_hidden_layers, n_hidden_channels,
                var_type='diagonal', nonlinearity=F.tanh,
                bound_mean=bound_mean,
                min_action=action_space.low, max_action=action_space.high,
                mean_wscale=1e-2)
            self.v = links.MLP(obs_size, 1, hidden_sizes=hidden_sizes) 
开发者ID:chainer,项目名称:chainerrl,代码行数:17,代码来源:train_ppo_gym.py

示例11: __init__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def __init__(self, obs_size, action_size):
        self.pi = policies.FCGaussianPolicyWithFixedCovariance(
            obs_size,
            action_size,
            np.log(np.e - 1),
            n_hidden_layers=2,
            n_hidden_channels=64,
            nonlinearity=F.tanh)
        self.v = v_function.FCVFunction(obs_size, n_hidden_layers=2,
                                        n_hidden_channels=64,
                                        nonlinearity=F.tanh)
        super().__init__(self.pi, self.v) 
开发者ID:chainer,项目名称:chainerrl,代码行数:14,代码来源:train_a2c_gym.py

示例12: _step_rnn_tanh

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def _step_rnn_tanh(rnn, x, state):
    assert isinstance(rnn, L.NStepRNNTanh)
    assert len(rnn.ws) == 1
    assert len(rnn.bs) == 1
    assert len(rnn.ws[0]) == 2
    assert len(rnn.bs[0]) == 2
    if state is None:
        xp = rnn.xp
        h = xp.zeros((len(x), rnn.out_size), dtype=np.float32)
    else:
        h = state
    w0, w1 = rnn.ws[0]
    b0, b1 = rnn.bs[0]
    h = F.tanh(F.linear(x, w0, b0) + F.linear(h, w1, b1))
    return h, h 
开发者ID:chainer,项目名称:chainerrl,代码行数:17,代码来源:test_stateless_recurrent_sequential.py

示例13: scale_by_tanh

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def scale_by_tanh(x, low, high):
    xp = cuda.get_array_module(x.array)
    scale = (high - low) / 2
    scale = xp.expand_dims(xp.asarray(scale, dtype=np.float32), axis=0)
    mean = (high + low) / 2
    mean = xp.expand_dims(xp.asarray(mean, dtype=np.float32), axis=0)
    return F.tanh(x) * scale + mean 
开发者ID:chainer,项目名称:chainerrl,代码行数:9,代码来源:state_q_functions.py

示例14: most_probable

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def most_probable(self):
        return F.tanh(self.mean) 
开发者ID:chainer,项目名称:chainerrl,代码行数:4,代码来源:distribution.py

示例15: sample_with_log_prob

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import tanh [as 别名]
def sample_with_log_prob(self):
        x = F.gaussian(self.mean, self.ln_var)
        normal_log_prob = _eltwise_gaussian_log_likelihood(
            x, self.mean, self.var, self.ln_var)
        log_probs = normal_log_prob - _tanh_forward_log_det_jacobian(x)
        y = F.tanh(x)
        return y, F.sum(log_probs, axis=1) 
开发者ID:chainer,项目名称:chainerrl,代码行数:9,代码来源:distribution.py


注:本文中的chainer.functions.tanh方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。