本文整理汇总了Python中chainer.functions.resize_images方法的典型用法代码示例。如果您正苦于以下问题:Python functions.resize_images方法的具体用法?Python functions.resize_images怎么用?Python functions.resize_images使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.functions
的用法示例。
在下文中一共展示了functions.resize_images方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def setUp(self):
class Model(chainer.Chain):
def __init__(self, ops, args, input_argname):
super(Model, self).__init__()
self.ops = ops
self.args = args
self.input_argname = input_argname
def __call__(self, x):
self.args[self.input_argname] = x
return self.ops(**self.args)
# (batch, channel, height, width) = (1, 1, 2, 2)
self.x = np.array([[[[64, 32], [64, 32]]]], np.float32)
# 2x upsampling
args = {'output_shape': (4, 4)}
self.model = Model(F.resize_images, args, 'x')
示例2: forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def forward(self, imgs, labels):
h_aux, h_main = self.model.extractor(imgs)
h_aux = F.dropout(self.aux_conv1(h_aux), ratio=0.1)
h_aux = self.aux_conv2(h_aux)
h_aux = F.resize_images(h_aux, imgs.shape[2:])
h_main = self.model.ppm(h_main)
h_main = F.dropout(self.model.head_conv1(h_main), ratio=0.1)
h_main = self.model.head_conv2(h_main)
h_main = F.resize_images(h_main, imgs.shape[2:])
aux_loss = F.softmax_cross_entropy(h_aux, labels)
main_loss = F.softmax_cross_entropy(h_main, labels)
loss = 0.4 * aux_loss + main_loss
chainer.reporter.report({'loss': loss}, self)
return loss
示例3: _multiscale_predict
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def _multiscale_predict(predict_method, img, scales):
orig_H, orig_W = img.shape[1:]
scores = []
orig_img = img
for scale in scales:
img = orig_img.copy()
if scale != 1.0:
img = transforms.resize(
img, (int(orig_H * scale), int(orig_W * scale)))
# This method should return scores
y = predict_method(img)[None]
assert y.shape[2:] == img.shape[1:]
if scale != 1.0:
y = F.resize_images(y, (orig_H, orig_W)).array
scores.append(y)
xp = chainer.backends.cuda.get_array_module(scores[0])
scores = xp.stack(scores)
return scores.mean(0)[0] # (C, H, W)
示例4: render
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def render(directory, elevation=30, distance=DISTANCE):
for azimuth in range(0, 360, 15):
filename = os.path.join(directory, 'e%03d_a%03d.png' % (elevation, azimuth))
set_camera_location(elevation, azimuth, distance)
bpy.context.scene.render.filepath = filename
bpy.ops.render.render(write_still=True)
if False:
img = scipy.misc.imread(filename)[:, :, :].astype('float32') / 255.
if False:
img = (img[::2, ::2] + img[1::2, ::2] + img[::2, 1::2] + img[1::2, 1::2]) / 4.
else:
import chainer.functions as cf
img = img.transpose((2, 0, 1))[None, :, :, :]
img = cf.resize_images(img, (64, 64))
img = img[0].data.transpose((1, 2, 0))
img = (img * 255).clip(0., 255.).astype('uint8')
scipy.misc.imsave(filename, img)
示例5: forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def forward(self, x):
y1 = F.resize_images(x, (257, 513))
return y1
# ======================================
示例6: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def __call__(self, x, out_size):
x = self.conv1(x)
x = self.dropout(x)
x = self.conv2(x)
x = F.resize_images(x, output_shape=out_size)
return x
示例7: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def __call__(self, x):
out_size = self.out_size if (self.out_size is not None) else\
(x.shape[2] * self.scale_factor, x.shape[3] * self.scale_factor)
return F.resize_images(x, output_shape=out_size)
示例8: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def __call__(self, x):
return F.resize_images(x, output_shape=self.size)
示例9: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def __call__(self, x):
input_shape = x.shape
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = F.resize_images(x, output_shape=input_shape[2:])
x = self.conv3(x)
x = F.sigmoid(x)
return x
示例10: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def __call__(self, x):
raw_pre_features = self.backbone(x)
rpn_score = self.navigator_unit(raw_pre_features)
rpn_score.to_cpu()
all_cdds = [np.concatenate((y.reshape(-1, 1), self.edge_anchors.copy()), axis=1)
for y in rpn_score.array]
top_n_cdds = [hard_nms(y, top_n=self.top_n, iou_thresh=0.25) for y in all_cdds]
top_n_cdds = np.array(top_n_cdds)
top_n_index = top_n_cdds[:, :, -1].astype(np.int64)
top_n_index = np.array(top_n_index, dtype=np.int64)
top_n_prob = np.take_along_axis(rpn_score.array, top_n_index, axis=1)
batch = x.shape[0]
x_pad = F.pad(x, pad_width=self.pad_width, mode="constant", constant_values=0)
part_imgs = []
for i in range(batch):
for j in range(self.top_n):
y0, x0, y1, x1 = tuple(top_n_cdds[i][j, 1:5].astype(np.int64))
x_res = F.resize_images(
x_pad[i:i + 1, :, y0:y1, x0:x1],
output_shape=(224, 224))
part_imgs.append(x_res)
part_imgs = F.concat(tuple(part_imgs), axis=0)
part_features = self.backbone_tail(self.backbone(part_imgs))
part_feature = part_features.reshape((batch, self.top_n, -1))
part_feature = part_feature[:, :self.num_cat, :]
part_feature = part_feature.reshape((batch, -1))
raw_features = self.backbone_tail(raw_pre_features)
concat_out = F.concat((part_feature, raw_features), axis=1)
concat_logits = self.concat_net(concat_out)
if self.aux:
raw_logits = self.backbone_classifier(raw_features)
part_logits = self.partcls_net(part_features).reshape((batch, self.top_n, -1))
return concat_logits, raw_logits, part_logits, top_n_prob
else:
return concat_logits
示例11: forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def forward(self, inputs, device):
x, = inputs
output_shape = self.in_shape[2:]
y = functions.resize_images(
x, output_shape,
mode=self.mode, align_corners=self.align_corners)
return y,
示例12: check_forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def check_forward(self, x, output_shape):
y = functions.resize_images(x, output_shape)
testing.assert_allclose(y.data, self.out)
示例13: check_backward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def check_backward(self, x, output_shape, gy):
def f(x):
return functions.resize_images(
x, output_shape,
mode=self.mode, align_corners=self.align_corners)
gradient_check.check_backward(
f, x, gy, dtype='d', atol=1e-2, rtol=1e-3, eps=1e-5)
示例14: forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def forward(self, x):
ys = [x]
H, W = x.shape[2:]
for f, ksize in zip(self, self.ksizes):
y = F.average_pooling_2d(x, ksize, ksize)
y = f(y)
y = F.resize_images(y, (H, W))
ys.append(y)
return F.concat(ys, axis=1)
示例15: _get_proba
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import resize_images [as 别名]
def _get_proba(self, img, scale, flip):
if flip:
img = img[:, :, ::-1]
_, H, W = img.shape
if scale == 1.0:
h, w = H, W
else:
h, w = int(H * scale), int(W * scale)
img = resize(img, (h, w))
img = self.prepare(img)
x = chainer.Variable(self.xp.asarray(img[np.newaxis]))
x = self.forward(x)
x = F.softmax(x, axis=1)
score = F.resize_images(x, img.shape[1:])[0, :, :h, :w].array
score = chainer.backends.cuda.to_cpu(score)
if scale != 1.0:
score = resize(score, (H, W))
if flip:
score = score[:, :, ::-1]
return score