当前位置: 首页>>代码示例>>Python>>正文


Python functions.mean方法代码示例

本文整理汇总了Python中chainer.functions.mean方法的典型用法代码示例。如果您正苦于以下问题:Python functions.mean方法的具体用法?Python functions.mean怎么用?Python functions.mean使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chainer.functions的用法示例。


在下文中一共展示了functions.mean方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _update_recurrent

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def _update_recurrent(self, dataset):
        """Update both the policy and the value function."""

        flat_dataset = list(itertools.chain.from_iterable(dataset))
        if self.obs_normalizer:
            self._update_obs_normalizer(flat_dataset)

        xp = self.model.xp

        assert 'state' in flat_dataset[0]
        assert 'v_teacher' in flat_dataset[0]

        if self.standardize_advantages:
            all_advs = xp.array([b['adv'] for b in flat_dataset])
            mean_advs = xp.mean(all_advs)
            std_advs = xp.std(all_advs)
        else:
            mean_advs = None
            std_advs = None

        for _ in range(self.epochs):
            random.shuffle(dataset)
            for minibatch in _yield_subset_of_sequences_with_fixed_number_of_items(  # NOQA
                    dataset, self.minibatch_size):
                self._update_once_recurrent(minibatch, mean_advs, std_advs) 
开发者ID:chainer,项目名称:chainerrl,代码行数:27,代码来源:ppo.py

示例2: compute_weighted_value_loss

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def compute_weighted_value_loss(eltwise_loss, weights,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example
        weights (ndarray): Weights for y, t.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    batch_size = eltwise_loss.shape[0]
    assert batch_accumulator in ('mean', 'sum')
    assert eltwise_loss.ndim == 3
    # eltwise_loss is (batchsize, n , n') array of losses
    # weights is an array of shape (batch_size)
    # apply weights per example in batch
    loss_sum = F.matmul(F.sum(F.mean(eltwise_loss, axis=2), axis=1), weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / batch_size
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
开发者ID:chainer,项目名称:chainerrl,代码行数:25,代码来源:iqn.py

示例3: _compute_loss

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def _compute_loss(self, exp_batch, errors_out=None):
        """Compute a loss.

        Returns:
            Returns:
                chainer.Variable: Scalar loss.
        """
        y, taus = self._compute_y_and_taus(exp_batch)
        with chainer.no_backprop_mode():
            t = self._compute_target_values(exp_batch)

        eltwise_loss = compute_eltwise_huber_quantile_loss(y, t, taus)
        if errors_out is not None:
            del errors_out[:]
            delta = F.mean(eltwise_loss, axis=(1, 2))
            errors_out.extend(cuda.to_cpu(delta.array))

        if 'weights' in exp_batch:
            return compute_weighted_value_loss(
                eltwise_loss, exp_batch['weights'],
                batch_accumulator=self.batch_accumulator)
        else:
            return compute_value_loss(
                eltwise_loss, batch_accumulator=self.batch_accumulator) 
开发者ID:chainer,项目名称:chainerrl,代码行数:26,代码来源:iqn.py

示例4: compute_value_loss

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def compute_value_loss(eltwise_loss, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example per atom
        batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
            the loss values in a batch. 'sum' will use the sum.
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')

    if batch_accumulator == 'sum':
        loss = F.sum(eltwise_loss)
    else:
        loss = F.mean(F.sum(eltwise_loss, axis=1))
    return loss 
开发者ID:chainer,项目名称:chainerrl,代码行数:19,代码来源:categorical_dqn.py

示例5: compute_weighted_value_loss

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def compute_weighted_value_loss(eltwise_loss, batch_size, weights,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example per atom
        weights (ndarray): Weights for y, t.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')

    # eltwise_loss is (batchsize, n_atoms) array of losses
    # weights is an array of shape (batch_size)
    # sum loss across atoms and then apply weight per example in batch
    loss_sum = F.matmul(F.sum(eltwise_loss, axis=1), weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / batch_size
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
开发者ID:chainer,项目名称:chainerrl,代码行数:24,代码来源:categorical_dqn.py

示例6: _simple_group_normalization

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def _simple_group_normalization(x, groups, gamma, beta, eps=1e-5):
    batch_size, channels = x.shape[:2]
    x_reshape = x.reshape(batch_size, groups, channels // groups, -1)

    mean = numpy.mean(x_reshape, axis=(2, 3), keepdims=True)
    var = numpy.var(x_reshape, axis=(2, 3), keepdims=True)
    std = numpy.sqrt(var + eps, dtype=x.dtype)

    x_hat = (x_reshape - mean) / std
    x_hat = x_hat.reshape(x.shape)

    for i in six.moves.xrange(x.ndim):
        if i != 1:  # except for channel dim
            gamma = numpy.expand_dims(gamma, i)
            beta = numpy.expand_dims(beta, i)

    return x_hat * gamma + beta 
开发者ID:chainer,项目名称:chainer,代码行数:19,代码来源:test_group_normalization.py

示例7: get_gaussian_params

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def get_gaussian_params(self, x):
        h = F.tanh(self.l1(x))
        h = self.l2(h)

        pi = h[:, :self.gaussian_mixtures]
        mu_var_dim = self.gaussian_mixtures * self.input_dim
        mu = h[:, self.gaussian_mixtures:self.gaussian_mixtures + mu_var_dim]
        log_var = h[:, self.gaussian_mixtures + mu_var_dim:]

        n_batch = x.shape[0]

        # mixing coefficients
        pi = F.reshape(pi, (n_batch, self.gaussian_mixtures))
        pi = F.softmax(pi, axis=1)

        # mean
        mu = F.reshape(mu, (n_batch, self.gaussian_mixtures, self.input_dim))

        # log variance
        log_var = F.reshape(
            log_var, (n_batch, self.gaussian_mixtures, self.input_dim))

        return pi, mu, log_var 
开发者ID:chainer,项目名称:models,代码行数:25,代码来源:mdn.py

示例8: pretraining

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def pretraining(optimizer):
    logger.info('pretraining')
    copy_grand_opt = copy.deepcopy(optimizer.grand_optimizer)
    losses = []
    for _ in range(10):
        x = optimizer.optnet.xp.random.normal(
            scale=10., size=(10000, 1)).astype('f')
        g = optimizer.optnet.step(x)
        # loss forcing g's sign to be the flip of input's sign
        # theta = theta - c*gradient
        # theta = theta + g
        loss = F.mean(F.clip(g, 0, 100) * (x > 0)
                      + F.clip(-g, 0, 100) * (x < 0))
        optimizer.optnet.cleargrads()
        loss.backward()
        optimizer.meta_update()
        optimizer.optnet.reset_state()
        losses.append(loss.item())
    logger.info('finished pretraining. losses {}'.format(losses))
    optimizer.release_all()
    # reset adam state
    optimizer = nets.optnets.OptimizerByNet(optimizer.optnet, copy_grand_opt)
    return optimizer, copy_grand_opt 
开发者ID:chainer,项目名称:models,代码行数:25,代码来源:train_mnist.py

示例9: test_forward_case3

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def test_forward_case3(self):
        """Whether a silhouette by neural renderer matches that by Blender."""

        # load teapot
        vertices, faces, textures = utils.load_teapot_batch()

        # create renderer
        renderer = neural_renderer.Renderer()
        renderer.image_size = 256
        renderer.anti_aliasing = False
        renderer.light_intensity_ambient = 1.0
        renderer.light_intensity_directional = 0.0

        images = renderer.render(vertices, faces, textures)
        images = images.data.get()
        image = images[2].mean(0)

        # load reference image by blender
        ref = scipy.misc.imread('./tests/data/teapot_blender.png')
        ref = ref.astype('float32')
        ref = (ref.min(-1) != 255).astype('float32')

        chainer.testing.assert_allclose(ref, image) 
开发者ID:hiroharu-kato,项目名称:neural_renderer,代码行数:25,代码来源:test_rasterize.py

示例10: __call__

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def __call__(self, x, t=None, w=None):
        # t, w is on host.

        # Forward network
        alpha = self.forward(x)

        if t is None:
            assert not chainer.config.train
            return

        # Weighted mean squared error
        # TODO: Do more tests
#         loss = F.mean(F.squared_error(alpha, t) * w)
        loss = F.mean_squared_error(alpha, t)

        if np.isnan(float(loss.data)):
            raise ValueError('Loss is nan.')
        chainer.report({'loss': loss}, self)

        return loss 
开发者ID:takiyu,项目名称:portrait_matting,代码行数:22,代码来源:fcn8s_matting.py

示例11: _compute_target_values

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def _compute_target_values(self, exp_batch):
        batch_next_state = exp_batch['next_state']

        with chainer.using_config('train', False), state_kept(self.q_function):
            next_qout = self.q_function(batch_next_state)

        target_next_qout = self.target_q_function(batch_next_state)

        next_q_max = target_next_qout.evaluate_actions(
            next_qout.greedy_actions)
        next_q_max = F.mean(next_q_max, axis=1)

        batch_rewards = exp_batch['reward']
        batch_terminal = exp_batch['is_state_terminal']
        discount = exp_batch['discount']

        return batch_rewards + discount * (1.0 - batch_terminal) * next_q_max 
开发者ID:minerllabs,项目名称:baselines,代码行数:19,代码来源:dqfd.py

示例12: loss_hinge_disc

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def loss_hinge_disc(self, fake, real):
        loss = F.mean(F.relu(0.5 - real))
        loss += F.mean(F.relu(0.5 + fake))
        return loss 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:6,代码来源:updater.py

示例13: loss_hinge_gene

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def loss_hinge_gene(self, fake):
        loss = F.mean(F.relu(-fake))
        return loss 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:5,代码来源:updater.py

示例14: q_values

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def q_values(self):
        with chainer.force_backprop_mode():
            return F.mean(self.quantiles, axis=1) 
开发者ID:chainer,项目名称:chainerrl,代码行数:5,代码来源:action_value.py

示例15: _mean_or_nan

# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import mean [as 别名]
def _mean_or_nan(xs):
    """Return its mean a non-empty sequence, numpy.nan for a empty one."""
    return np.mean(xs) if xs else np.nan 
开发者ID:chainer,项目名称:chainerrl,代码行数:5,代码来源:ppo.py


注:本文中的chainer.functions.mean方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。