本文整理汇总了Python中chainer.functions.fixed_batch_normalization方法的典型用法代码示例。如果您正苦于以下问题:Python functions.fixed_batch_normalization方法的具体用法?Python functions.fixed_batch_normalization怎么用?Python functions.fixed_batch_normalization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.functions
的用法示例。
在下文中一共展示了functions.fixed_batch_normalization方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_backward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def check_backward(self, inputs, grad_outputs, backend_config):
inputs = backend_config.get_array(inputs)
grad_outputs = backend_config.get_array(grad_outputs)
if not self.c_contiguous:
with backend_config:
inputs = _as_noncontiguous_array(inputs)
grad_outputs = _as_noncontiguous_array(grad_outputs)
def f(*inputs):
y = functions.fixed_batch_normalization(*inputs, eps=self.eps)
return y,
with backend_config:
gradient_check.check_backward(
f, inputs, grad_outputs,
**self.check_backward_options)
示例2: check_double_backward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def check_double_backward(
self, inputs, grad_outputs, grad_grad_inputs, backend_config):
inputs = backend_config.get_array(inputs)
grad_outputs = backend_config.get_array(grad_outputs)
grad_grad_inputs = backend_config.get_array(grad_grad_inputs)
if not self.c_contiguous:
with backend_config:
inputs = _as_noncontiguous_array(inputs)
grad_outputs = _as_noncontiguous_array(grad_outputs)
grad_grad_inputs = _as_noncontiguous_array(grad_grad_inputs)
def f(*inputs):
return functions.fixed_batch_normalization(*inputs, eps=self.eps)
with backend_config:
gradient_check.check_double_backward(
f, inputs, grad_outputs, grad_grad_inputs,
**self.check_double_backward_options)
示例3: gen_convtranspose_bn
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def gen_convtranspose_bn(test_name):
gb = onnx_script.GraphBuilder(test_name)
bsize = 2
ichan = 3
ochan = 4
ksize = 3
isize = 7
x = aranges(bsize, ochan, isize, isize)
w = aranges(ochan, ichan, ksize, ksize) * 0.01
scale = aranges(ichan) * 0.1 + 1
bias = aranges(ichan) * 0.1 + 2
mean = aranges(ichan) * 0.1 + 3
var = aranges(ichan) * 0.1 + 4
conv = F.deconvolution_2d(x, w, pad=1, outsize=(isize, isize))
y = F.fixed_batch_normalization(conv, scale, bias, mean, var)
x_v = gb.input('x', x)
w_v = gb.param('w', w)
scale_v = gb.param('scale', scale)
bias_v = gb.param('bias', bias)
mean_v = gb.param('mean', mean)
var_v = gb.param('var', var)
conv_v = gb.ConvTranspose([x_v, w_v],
kernel_shape=[ksize, ksize],
pads=[1, 1, 1, 1],
output_shape=[isize, isize])
y_v = gb.BatchNormalization([conv_v, scale_v, bias_v, mean_v, var_v])
gb.output(y_v, y)
gb.gen_test()
示例4: call_bn
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def call_bn(bn, x, test=False, update_batch_stats=True):
if test:
return F.fixed_batch_normalization(x, bn.gamma, bn.beta, bn.avg_mean, bn.avg_var, use_cudnn=False)
elif not update_batch_stats:
return F.batch_normalization(x, bn.gamma, bn.beta, use_cudnn=False)
else:
return bn(x)
示例5: _as_noncontiguous_array
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def _as_noncontiguous_array(array):
# TODO(niboshi): cupy + cudnn test fails in F.fixed_batch_normalization.
# Fix it and use testing.array._as_noncontiguous_array.
def as_noncontiguous_array(arr):
if arr is None:
return None
if isinstance(arr, (numpy.ndarray, cuda.ndarray)):
xp = chainer.backend.get_array_module(arr)
return xp.asfortranarray(arr)
return testing.array._as_noncontiguous_array(arr)
if isinstance(array, (list, tuple)):
return type(array)([as_noncontiguous_array(arr) for arr in array])
return as_noncontiguous_array(array)
示例6: check_forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def check_forward(self, inputs, enable_backprop, backend_config):
y_expected, = self.forward_cpu(inputs)
inputs = backend_config.get_array(inputs)
if not self.c_contiguous:
with backend_config:
inputs = _as_noncontiguous_array(inputs)
with chainer.using_config('enable_backprop', enable_backprop):
with backend_config:
y = functions.fixed_batch_normalization(*inputs, eps=self.eps)
assert y.data.dtype == self.dtype
testing.assert_allclose(
y_expected, y.data, **self.check_forward_options)
示例7: test_valid
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def test_valid(self):
functions.fixed_batch_normalization(*self.args, eps=1e-5)
示例8: setUp
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def setUp(self):
class Model(chainer.Chain):
def __call__(self, x):
mean = x.array.mean(axis=0)
var = x.array.var(axis=0)
gamma = np.ones_like(mean, dtype=x.dtype)
beta = np.zeros_like(mean, dtype=x.dtype)
return F.fixed_batch_normalization(x, gamma, beta, mean, var)
self.model = Model()
self.x = input_generator.increasing(2, 5)
示例9: test_forward1
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def test_forward1(self):
N, C = 8, 1
x, gamma, beta, mean, var = get_params(N, C)
cy = CF.fixed_batch_normalization(x, gamma, beta, mean, var)
with dezero.test_mode():
y = F.batch_nrom(x, gamma, beta, mean, var)
self.assertTrue(array_allclose(y.data, cy.data))
示例10: test_forward2
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def test_forward2(self):
N, C = 1, 10
x, gamma, beta, mean, var = get_params(N, C)
cy = CF.fixed_batch_normalization(x, gamma, beta, mean, var)
with dezero.test_mode():
y = F.batch_nrom(x, gamma, beta, mean, var)
self.assertTrue(array_allclose(y.data, cy.data))
示例11: test_forward3
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def test_forward3(self):
N, C = 20, 10
x, gamma, beta, mean, var = get_params(N, C)
cy = CF.fixed_batch_normalization(x, gamma, beta, mean, var)
with dezero.test_mode():
y = F.batch_nrom(x, gamma, beta, mean, var)
self.assertTrue(array_allclose(y.data, cy.data))
示例12: test_forward4
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import fixed_batch_normalization [as 别名]
def test_forward4(self):
N, C, H, W = 20, 10, 5, 5
x, gamma, beta, mean, var = get_params(N, C, H, W)
cy = CF.fixed_batch_normalization(x, gamma, beta, mean, var)
with dezero.test_mode():
y = F.batch_nrom(x, gamma, beta, mean, var)
self.assertTrue(array_allclose(y.data, cy.data))